Abstract:
The present disclosure provides a method for bonding parts, comprising the following steps (a) Providing a two-component adhesive composition precursor, comprising a first part (A) comprising at least one epoxy curing agent and preferably at least one first dye; a second part (B) comprising at least one second dye different from the at least one first dye and at least one epoxy resin; (b) Mixing part (A) and part (B) of the two-component adhesive composition precursor so as to obtain an adhesive composition; (c) Applying the adhesive composition onto a first part; (d) Applying a second part onto the adhesive composition applied to the first part; and then performing a first curing step at a first temperature, wherein the adhesive composition undergoes a first colour change; or (e) Performing a first curing step at a first temperature, wherein the adhesive composition undergoes a first colour change, and then applying a second part onto the adhesive composition applied to the first part; (f) Perform a second curing step at a second temperature higher than the first temperature, thereby fully curing the adhesive composition so as to obtain a structural adhesive bond between the first and second parts, wherein the adhesive composition undergoes a second colour change.
Abstract:
The invention provides an assembly comprising at least one substrate being bonded to a structural adhesive wherein the structural adhesive is obtained by curing a precursor comprising a cross-linkable polymer, wherein a surface area of the substrate bonded to the structural adhesive comprises at least one metal, said surface area being treated with a liquid activator.
Abstract:
A heat-curable adhesive composition comprising an epoxy-resin, a toughening agent, a curing agent and an acetoacetoxy-functionalized compound wherein the composition can be cured to form structural adhesives of high impact strength.
Abstract:
The present disclosure relates to a curable precursor of a structural adhesive composition, comprising: a thermally curable resin; a thermal curing initiator for the thermally curable resin; a radiation self-polymerizable multi-functional compound comprising a polyether oligomeric backbone and at least one free-radical (co)polymerizable reactive group at each terminal position of the oligomer backbone; and a free-radical polymerization initiator for the radiation self-polymerizable multi-functional compound.
Abstract:
The present disclosure provides a method for bonding parts, comprising the following steps (a) Providing a two-component adhesive composition precursor, comprising a first part (A) comprising at least one epoxy curing agent and preferably at least one first dye; a second part (B) comprising at least one second dye different from the at least one first dye and at least one epoxy resin; (b) Mixing part (A) and part (B) of the two-component adhesive composition precursor so as to obtain an adhesive composition; (c) Applying the adhesive composition onto a first part; (d) Applying a second part onto the adhesive composition applied to the first part; and then performing a first curing step at a first temperature, wherein the adhesive composition undergoes a first colour change; or (e) Performing a first curing step at a first temperature, wherein the adhesive composition undergoes a first colour change, and then applying a second part onto the adhesive composition applied to the first part; (f) Perform a second curing step at a second temperature higher than the first temperature, thereby fully curing the adhesive composition so as to obtain a structural adhesive bond between the first and second parts, wherein the adhesive composition undergoes a second colour change.
Abstract:
The present disclosure relates to a curable precursor of a structural adhesive composition, comprising: a) a cationically self-polymerizable monomer; b) a polymerization initiator of the cationically self-polymerizable monomer which is initiated at a temperature T1; c) a curable monomer which is different from the cationically self-polymerizable monomer; and d) a curing initiator of the curable monomer which is initiated at a temperature T2 and which is different from the polymerization initiator of the cationically self-polymerizable monomer. According to another aspect, the present disclosure is directed to a partially cured precursor of a structural adhesive composition. According to still another aspect, the present disclosure relates to a method of bonding to parts. In yet another aspect, the disclosure relates to the use of a curable precursor or a partially cured precursor as described above, for industrial applications, in particular for body-in-white bonding applications for the automotive industry.
Abstract:
The present disclosure relates to a pressure sensitive adhesive assembly suitable for bonding to a substrate provided with an uneven surface, wherein the pressure sensitive adhesive (PSA) assembly comprises a polymeric foam layer comprising a polymeric base material, and having a complex viscosity comprised between 2,000 Pa.s to 80,000 Pa.s, when measured at 120C according to the test method described in the experimental section. The present disclosure is also directed to a method of applying a pressure sensitive adhesive assembly to a substrate provided with an uneven surface, and uses thereof.