Abstract:
The present application pertains to a compression packing seal including a braided dual-sided jacket, methods for producing and using such a seal, and apparatuses suitable for producing such a seal. The compression packing seal is made up of a core (132) and a jacket (134) braided round the core. The jacket may include two or more different materials (140, 150) that are braided together in such a way that, in cross-section, the jacket has an asymmetrical configuration relative to a first axis that is substantially perpendicular to the longitudinal axis and is substantially perpendicular to a side of the jacket. Accordingly, when viewed in a cross-sectional plane, the jacket may expose substantially only a first material along a first side, and substantially only a second material along a second side.
Abstract:
A mechanical seal for providing a fluid-tight seal between a rotating shaft and a stationary housing comprises a first pair of seal members for sealing and separating a process fluid from a barrier fluid. The first pair of seal members comprises a first rotatable seal ring having a rotary seal face and a first stationary seal ring having a stationary seal face engaging the rotary seal face. The first pair of seal members further includes generally radially extending piston areas on the rear sides of the primary seal members for biasing seal faces together. The piston areas are defined by a movable shuttle member that is connected to the rotary seal ring and a sleeve, which is in turn connected to the rotating shaft. Under normal operating conditions, the shuttle is moved to a first position to allow the process fluid to exert a force on a first piston area to bias the seal faces together. Under reverse operating conditions, when the barrier fluid pressure is greater than the process fluid pressure, the shuttle member is moved to a second position where it exerts a force, along with the barrier fluid, on a second piston area to bias the seal faces together.
Abstract:
A split mechanical composite seal assembly for providing a seal between a rotating shaft and a static surface. The split mechanical composite seal assembly includes first and second axially adjacent annular seal elements. The first and second seal elements each include a sealing edge contacting the shaft to provide a respective seal between the first and second seal element and the shaft. A static housing receives the first and second seal elements and engages the static surface to provide a static stationary seal, while concomitantly providing a flex region that engages the seal elements to form a dynamic seal therewith. A holder assembly receives one seal element and may include a double-angled lead-in to facilitate installation of the seal element. The holder assembly may include a detent groove for receiving and retaining an O-ring disposed about the seal element. The static housing may comprise two mating segments having overlapping surfaces.
Abstract:
A spacing mechanism is provided for locating at least one rotatable component relative to a stationary component of a mechanical seal. The spacing mechanism is configured to automatically disengage from the rotatable seal component, and/or its associated hardware, upon rotation of the rotatable seal component. The spacing mechanism may be configured to axially and/or radially locate one or more rotatable components relative to one or more stationary components and may be configured to automatically disengage from the rotatable seal component by the rotation of the rotatable seal component.
Abstract:
A split mechanical seal for mounting to a housing containing a rotating shaft comprising a gland assembly configured for mounting to the housing and forming a chamber, where the gland assembly includes a top surface having a gland groove formed thereon. The gland groove is formed at least in part by at least one raised wall portion that extends axially outwardly from the top surface. The seal also includes a stationary seal ring having a groove or recess formed in an inner surface.
Abstract:
The present application pertains to a braided dual- sided compression packing seal, methods for producing and using such a seal, and apparatuses suitable for producing such a seal. The braided dual- sided compression packing seal is made up of two or more different materials that are braided together in such a way that, in cross-section, the compression packing seal has an asymmetrical configuration relative to a first axis that is substantially perpendicular to the longitudinal axis and is substantially perpendicular to a side of the compression packing seal. Accordingly, when viewed in a cross-sectional plane, the compression packing seal may expose substantially only a first material along a first side of the seal, and substantially only a second material along a second side of the seal.
Abstract:
A mechanical seal having a single rotatable seal ring having a pair of concentric seal faces to form a radially inner seal face and a radially outer seal face. The mechanical seal also includes first and second stationary seal rings, each having a seal face, where the seal face of the first stationary seal ring contacts the radially outer seal face of the rotatable seal ring and the seal face of the second stationary seal ring contacts the radially inner seal face of the rotatable seal ring. The seal also includes a sleeve adapted to be mounted about the rotating shaft and rotatably coupled thereto and to the rotatable seal ring, said sleeve having a flange portion that is configured for housing at least a portion of the rotatable seal ring, and a gland for housing at least partially the single rotary seal ring and the first and second stationary seal rings. Under positive and negative pressure conditions, the combined area of the seal piston areas are substantially identical to provide a balanced seal arrangement without requiring the use of axially movable components.