Abstract:
An optical transport system configured to transmit at least two phase- conjugated optical variants carrying the same modulated symbols, with the phase- conjugated optical variants in being different from one another in one or more of polarization of light, the time of transmission, spatial localization, optical carrier wavelength, and subcarrier frequency during transmission. The two phase-conjugated optical variants can be generated by a single polarization-diversity transmitter to be orthogonally polarized, and propagate through an optical transmission link with the same wavelength and spatial path. The optical variants are detected and processed at the receiver in a manner that enables coherent summation of the corresponding electrical signals prior to constellation de-mapping. The coherent summation tends to cancel out the deleterious effects of nonlinear distortions imparted on the individual phase-conjugated optical variants in an optical fiber transmission link because said nonlinear distortions tend to be opposite to each other.
Abstract:
An optical transport system configured to transmit a set of two or more optical variants per bit-word, with the optical variants in the set being different from one another in one or more of the time of transmission, spatial localization, polarization of light, carrier wavelength, and subcarrier frequency. Differences between the optical variants may also be due to different respective constellation mapping. The optical variants of each set are detected and processed at the receiver in a manner that enables coherent summation of the corresponding electrical signals prior to constellation de- mapping. The coherent summation tends to average out the deleterious effects of linear and nonlinear noise/distortions imparted on the individual optical variants in the optical transport link because said noise/distortions are incoherent in nature. In various embodiments, a BER reduction enabled by the use of optical variants can be implemented in addition to or instead of that provided by FEC coding.
Abstract:
A space division multiplexed (SDM) transmission system that includes at least two segments of transmission media in which a spatial assignment of the two segments is different is provided. For example, the SDM transmission may include a first segment of transmission media having a first spatial assignment and a second segment of transmission media having a second spatial assignment, wherein the first spatial assignment differs from the second spatial assignment. An example method obtains an optical signal on a first segment of transmission media having a first spatial assignment and forwards the optical signal on a second segment of transmission media with a different spatial assignment. The transmission media may be a multi-core fiber (MCF), a multi-mode fiber (MMF), a few-mode fiber (FMF), or a ribbon cable comprising nominally uncoupled single-mode fiber (SMF).
Abstract:
An apparatus includes an optical fiber having a plurality of optical cores therein. Each optical core is located lateral in the optical fiber to the remaining one or more optical cores and is able to support a number of propagating optical modes at telecommunications wavelengths. Each number is less than seventy.
Abstract:
Various embodiments provide secure optical transmission of data. Noise may be added to optical signals transmitted by spatial paths of a multimode optical fiber. The noise may be added electrically prior to modulation, or optically after modulation. In some embodiments a transmitter and a receiver cooperate to maintain a noise level sufficient to place a tapped signal in a noise regime that provides a predetermined level of data security.
Abstract:
The outage probability in an under-addressed optical MIMO system may be reduced by configuring an intra-link optical mode mixer to dynamically change the spatial-mode mixing characteristics of the link on a time scale that is faster than the channel coherence time. Provided that the MFMO system employs an FEC code that has a sufficient error-correcting capacity for correcting the amount of errors corresponding to an average state of the MIMO channel, this relatively fast dynamic change tends to reduce the frequency of events during which the number of errors per FEC-encoded block of data exceeds the error-correcting capacity of the FEC code.
Abstract:
An optical mixer that, in one embodiment, has a single optical hybrid optically coupled to a single polarization beam splitter. The optical hybrid mixes a polarization-multiplexed optical communication signal and a local-oscillator signal to generate four mixed signals, each corresponding to a different relative phase shift between the communication and local-oscillator signals. The polarization beam splitter separates each of the mixed signals into two polarization components, subsequent processing of which enables an optical receiver employing the optical mixer to recover the data carried by the communication signal.
Abstract:
An example method includes modulating an optical signal using a Phase Shift Keying (PSK) signal constellation, wherein signal points of the PSK signal constellation are located on at least two rings. The first ring has a first radius rl and a second ring has a second radius r2, wherein the first radius and second radius differ, and wherein the signal points are not located on a regular n-dimension lattice, where n is an integer. The regular n-dimension lattice is formed from a minimum number of lines parallel to an axis for each of the n-dimensions that connect ones of the signal points of the PSK signal constellation on either side of an origin of the axis. The second radius may be greater than the first radius, with the second radius a non-integer multiple of the first ring radius.
Abstract:
According to one embodiment of the invention, a 16-QAM optical modulator has a Mach-Zehnder modulator (MZM) coupled to a drive circuit that drives the MZM based on two electrical binary signals. The output of the MZM corresponds to an intermediary constellation consisting of four constellation points arranged on a straight line in the corresponding in-phase/quadrature-phase (I-Q) plane. Two of these constellation points correspond to a zero phase, and the remaining two constellation points correspond to a phase of π radian. The 16-QAM optical modulator further has a phase shifter that modulates the output of the MZM based on two additional electrical binary signals. The resulting optical output signal corresponds to a star 16-QAM constellation, which is produced by incremental rotation of the intermediary constellation.
Abstract:
An optical routing scheme in which an optical network having a mesh topology is configured to route optical packets through an optical routing layout superimposable with the mesh topology, but having a star-like topology. Using this routing layout, the optical network can be configured to transport optical packets from respective ingress nodes, through the hub node located at the star center, to respective egress nodes in a manner that enables a data throughput that approaches the theoretical capacity. No special hardware is required for implementing the hub functionality, and any node of the optical network can be configured to serve as the hub node. The latter feature enables relatively straightforward optimization of the optical routing layout and transmission schedule, e.g., by changing the identity of the hub node and adjusting the transmission schedule at the ingress nodes to synchronize packet arrivals to the hub node.