Abstract:
This relates to an event sensing device that includes an event sensing panel and is able to dynamically change the granularity of the panel according to present needs. Thus, the granularity of the panel can differ at different times of operation. Furthermore, the granularity of specific areas of the panel can also be dynamically changed, so that different areas feature different granularities at a given time. This also relates to panels that feature different inherent granularities in different portions thereof. These panels can be designed, for example, by placing more stimulus and/or data lines in different portions of the panel, thus ensuring different densities of pixels in the different portions. Optionally, these embodiments can also include the dynamic granularity changing features noted above.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside (not between) the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside (not between) the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane- switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
A method for performing multi-touch (MT) data fusion is disclosed in which multiple touch inputs occurring at about the same time are received to generating first touch data. Secondary sense data can then be combined with the first touch data to perform operations on an electronic device. The first touch data and the secondary sense data can be time-aligned and interpreted in a time-coherent manner. The first touch data can be refined in accordance with the secondary sense data, or alternatively, the secondary sense data can be interpreted in accordance with the first touch data. Additionally, the first touch data and the secondary sense data can be combined to create a new command.
Abstract:
A multi-touch gesture dictionary is disclosed herein. The gesture dictionary can include a plurality of entries, each corresponding to a particular chord. The dictionary entries can include a variety of motions associated with the chord and the meanings of gestures formed from the chord and the motions. The gesture dictionary may take the form of a dedicated computer application that may be used to look up the meaning of gestures. The gesture dictionary may also take the form of a computer application that may be easily accessed from other applications. The gesture dictionary may also be used to assign user-selected meanings to gestures. Also disclosed herein are computer systems incorporating multi-touch gesture dictionaries. The computer systems can include, desktop computers, tablet computers, notebook computers, handheld computers, personal digital assistants, media players, mobile telephones, and the like.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside (not between) the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane- switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
Methods and apparatus for normalizing the effects of the changes to the parasitic capacitive coupling that can occur in touch sensor panels so as to reduce or eliminate the appearance of erroneous touch events. In some embodiments, at some time prior to regular device use (e.g. during factory calibration), a conductive sheet is initially positioned so as to entirely cover a touch surface of a touch sensor panel. A set of sensed signals may be determined upon driving the drive lines and sensing the sense lines of the panel. Correctional coefficients may then be calculated based in part upon the difference between a sensed signal and an expected signal. The correctional coefficients may then be stored in the device and used to determine signal corrections for a set of measured signals during normal operation.
Abstract:
Multi-touch touch-sensing devices and methods are described herein. The touch sensing devices can include multiple sense points, each located at a crossing of a drive line and a sense line. In some embodiments, multiple drive lines may be simultaneously or nearly simultaneously stimulated with drive signals having unique characteristics, such as phase or frequency. A sense signal can occur on each sense line that can be related to the drive signals by an amount of touch present at sense points corresponding to the stimulated drive lines and the sense line. By using processing techniques based on the unique drive signals, an amount of touch corresponding to each sense point can be extracted from the sense signal. The touch sensing methods and devices can be incorporated into interfaces for a variety of electronic devices such as a desktop, tablet, notebook, and handheld computers, personal digital assistants, media players, and mobile telephones.
Abstract:
An electronic device uses separate surfaces for input and output. One of the surfaces (e.g., the bottom) includes a force-sensitive touch-surface through which a user provides input (e.g., cursor manipulation and control element selection). On a second surface (e.g., the top), a display element is used to present information appropriate to the device's function (e.g., video information), one or more control elements and a cursor. The cursor is controlled through manipulation of the back-side touch-surface. The cursor identifies where on the back-side touch-surface the user's finger has made contact. When the cursor is positioned over the desired control element, the user selects or activates the function associated with the control element by applying pressure to the force-sensitive touch-surface with their finger. Accordingly, the electronic device may be operated with a single hand, wherein cursor movement and control element selection may be accomplished without lifting one's finger.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stack up but outside (not between) the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. Tn another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane - s witching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.