Abstract:
A display device may include pixels and source lines that provide data line signals to the pixels. The display device may also include gate lines that provide gate signals to switches associated with the pixels. The display device may also include vertical gate lines disposed generally parallel to the source lines and coupled to the gate lines at cross point nodes. The display device may also include compensation lines, such that each compensation line is proximate to a respective vertical gate line. The compensation lines may transmit compensation signals having an opposite polarity as compared to respective gate signals to reduce or eliminate a kickback voltage on at least one of the plurality of pixels.
Abstract:
Display backplane comprising two pairs of stacked data lines sandwiching pixel electrodes (130), wherein each pair of stacked data lines comprises a lower data line (110) and an upper data line (120) stacked on the lower data line (110), so that the charging time for writing the data signals can be reduced without reducing the pixels' apertures, and wherein the left and right edge (131A, 131B) of each pixel electrode (130) is separated from the respective adjacent lower data line (110) by the same distance so that the parasitic capacitances between the pixel electrode (130) and the two adjacent data lines (110) are substantially equal to each other.
Abstract:
A display may have an array of pixels arranged in rows and columns. Each pixel may have a transistor for controlling the amount of output light associated with that pixel. The transistors may be thin-film transistors having active areas, first and second source-drain terminals, and gates. Gate lines may be used to distribute gate control signals to the gates of the transistors in each row. Data lines that run perpendicular to the gate lines may be used to distribute image data along columns of pixels. The gate lines may be connected to gate line extensions that run parallel to the data lines. The data lines may each overlap a respective one of the gate line extensions. Vias may be used to connect the gate line extensions to the gate lines. The gate line extensions may all have the same length.
Abstract:
A system and device for driving high resolution monitors while reducing artifacts thereon. Utilization of Z-inversion polarity driving techniques to drive pixels in a display reduces power consumption of the display but tends to generate visible horizontal line artifacts caused by capacitances present between the pixels and data lines of the display. By introducing a physical shield between the pixel and data line elements, capacitance therebetween can be reduced, thus eliminating the cause of the horizontal line artifacts. The shield may be a common voltage line (Vcom) of the display.