Abstract:
A thermal abatement system is provided, including: a thermal abatement reactor; an inlet in fluid communication with the reactor; a process chamber in fluid communication with the inlet; a first sheathing fluid source in fluid communication with the inlet; a first flow control device, adapted to regulate a flow of a first sheathing fluid from the first sheathing fluid source; and a controller, in signal communication with the first flow control device, adapted to regulate the sheathing fluid by operating the first flow control device; wherein the inlet is adapted to receive an effluent stream from the process chamber and the first sheathing fluid from the first sheathing fluid source, to sheathe the effluent stream with the first sheathing fluid to form a sheathed effluent stream, and to introduce the sheathed effluent stream into the reactor.
Abstract:
Methods and apparatus for efficiently operating an electronic device manufacturing system are provided. In one aspect, an electronic device manufacturing system is provided, including: a process tool; a process tool controller linked to the process tool, wherein the process tool controller is adapted to control the process tool; a first sub-fab auxiliary system linked to the process tool controller; wherein the first sub-fab auxiliary system is adapted to operate in a first operating mode and a second operating mode; and wherein the process tool controller is adapted to cause the first sub-fab auxiliary system to change from the first operating mode to the second operating mode.
Abstract:
In some aspects, an apparatus is provided for abating perfluorocarbons (PFCs) in a controlled decomposition oxidation (CDO) thermal reaction chamber. The apparatus includes (1) a cartridge insertable into the thermal reaction chamber having gas-permeable first and second ends and including a catalyst material; and (2) thermally-conductive fixtures positioned within the cartridge. Numerous other aspects are provided.
Abstract:
Embodiments of an abatement apparatus are disclosed herein. In some embodiments, an abatement apparatus may include a scrubber configured to receive an effluent stream from a process chamber and further configured to remove first particles from the effluent stream; a scrubber conduit coupled to the scrubber to receive the effluent stream therefrom and configured to remove second particles from the effluent stream, the scrubber conduit having one or more inlets configured to provide a fluid to sufficiently wet an interior surface of the scrubber conduit to trap the second particles thereon and to wash the second particles therealong; and a central scrubber coupled to the scrubber via the scrubber conduit. In some embodiments, the scrubber conduit is downward sloping from the scrubber to the central scrubber. In some embodiments, a plurality of scrubbers may be coupled to the central scrubber via a plurality of scrubber conduits.
Abstract:
Methods and apparatus for recovering heat from disposed effluents are disclosed herein. In some embodiments, an apparatus may include a first process chamber configured for gaseous or liquid processes; a second process chamber configured for liquid processes; and a heat pump having a compressor and a first heat exchanger, wherein the compressor is configured to use a first effluent exhausted from the first process chamber and wherein the first heat exchanger having first and second sides configured to transfer heat therebetween, wherein the first side is configured to flow a liquid reagent therethrough and into the second process chamber, and wherein the second side is configured to flow the pressurized first effluent from the first process chamber therethrough. In some embodiments, a heater may be disposed between the heat pump and the second process chamber to further heat the liquid reagent prior to entering the second process chamber.
Abstract:
In certain embodiments, an apparatus is provided for use in removing pollutants from a gas stream. The apparatus includes a thermal reaction unit formed from a plurality of stacked porous ceramic rings. A first of the porous ceramic rings has a first coefficient of thermal expansion (CTE) and a second of the porous ceramic rings has a second CTE. Other aspects are provided.
Abstract:
In one or more aspects, a thermal reactor apparatus is provided that may be used to treat industrial effluent fluids, for example waste effluent produced in semiconductor and liquid crystal display manufacturing processes. Specifically, the present invention may include a system comprising a controller, a reaction chamber adapted to be controlled by the controller, a conduit into the reaction chamber, a pilot disposed at a first end of the conduit within the reaction chamber, a sensor disposed at a second end of the conduit outside of the reaction chamber that is coupled to the controller and adapted to provide an indication to the controller whether the pilot is lit, and an actuator operable to open and close the conduit. Numerous other aspects of the invention are disclosed.
Abstract:
Systems and methods are provided for controlled combustion and decomposition of gaseous pollutants while reducing deposition of unwanted reaction products from within the treatment systems. Exemplary systems include a novel thermal reaction chamber design having stacked porous ceramic rings through which fluid, e.g., gases, may be directed to form a boundary layer along the interior wall of the thermal reaction chamber, thereby reducing particulate matter buildup thereon. The systems may further include the introduction of fluids from the center pilot jet to alter the aerodynamics of the interior of the thermal reaction chamber.
Abstract:
Methods and apparatus for treating an exhaust gas in a foreline of a substrate processing system are provided herein. In some embodiments, an apparatus for treating an exhaust gas in a foreline of a substrate processing system includes a plasma source coupled to a foreline of a process chamber, a reagent source coupled to the foreline upstream of the plasma source, and a foreline gas injection kit coupled to the foreline to controllably deliver a gas to the foreline, wherein the foreline injection kit includes a pressure regulator to set a foreline gas delivery pressure setpoint, and a first pressure gauge coupled to monitor a delivery pressure of the gas upstream of the foreline.
Abstract:
Apparatus for improved treatment of effluents are provided herein. In some embodiments, an abatement system may include an exhaust conduit to flow an effluent stream therethrough; a plurality of packed beds disposed in the exhaust conduit to remove non-exhaustible effluents from the effluent stream; one or more spray jets to provide an effluent treating agent between adjacent packed beds, the effluent treating agent to remove non-exhaustible effluents from the effluent stream; and a dripper disposed in the exhaust conduit above an uppermost packed bed to provide the effluent treating agent in large droplets to wet and rinse particulate from an upper surface of the uppermost packed bed substantially without forming fine droplets.