Abstract:
The present invention relates to a method for producing patient cancerous disease modifying antibodies using a novel paradigm of screening. The antibodies can be used in aid of staging and diagnosis of a cancer, and can be used to treat primary tumors and tumor metastases. The anti-cancer antibodies can be conjugated to toxins, enzymes, radioactive compounds, and hematogenous cells. The invention further relates to such diagnosis and treatment which revolves around the ability of the 5LAC23 monoclonal antibody (or antigenic binding fragments derived therefrom) to bind with the Laminin Receptor 1 Precursor Protein 37LRP; and most particularly to diagnosis and treatment of Hepatocellular Carcinoma by various means which rely upon direct binding of 5LAC-23 with the particular antigenic moiety specifically recognized thereby and generally overexpressed in Hepatocellular carcinoma cells.
Abstract:
This invention relates to the diagnosis and treatment of cancerous diseases, particularly to the mediation of cytotoxicity of tumour cells evidencing surface expression of CD44; and most particularly to the use of cancerous disease modifying antibodies (CDMAB), optionally in combination with one or more chemotherapeutic agents, as a means for initiating the cytotoxic response. The invention further relates to binding assays which utilize the CDMAB of the instant invention.
Abstract:
The present invention relates to a method for producing cancerous disease modifying antibodies using a novel paradigm of screening. By segregating the anti-cancer antibodies using cancer cell cytotoxicity as an end point, the process makes possible the production of anti-cancer antibodies for therapeutic and diagnostic purposes. The antibodies can be used in aid of staging and diagnosis of a cancer, and can be used to treat primary tumors and tumor metastases. The anti-cancer antibodies can be conjugated to toxins, enzymes, radioactive compounds, cytokines, interferons, target or reporter moieties and hematogenous cells.