Abstract:
Systems, apparatuses, and methods are provided for steering aligning a laser beam and a fuel target. An example method can include generating, at a first rate, first sensing data indicative of a first overlap between a fuel target and a laser beam. The example method can further include generating, at a second rate, second sensing data indicative of a second overlap between the fuel target and the laser beam. The method can further include generating, at a third rate, and based on the first sensing data and the second sensing data, a steering control signal configured to steer the laser beam or the fuel target. In some aspects, the second rate can be different from the first rate, and the third rate can be about equal to the first rate. In other aspects, the first rate and the second rate can be about equal to the third rate.
Abstract:
In LPP EUV systems, sinusoidal oscillations or instabilities can occur m the generated EUV energy. This is avoided by detecting when the LPP EUV system is approaching such instability and adjusting the LPP EUV system by moving the laser beam of the LPP EUV sysiem. Detection is done by determining when the generated EUV energy is at or above a primary threshold. Adjusting the LPP EUV system by moving the laser beam is done for a fixed period of time, until a subsequently generated EUV energy is below the primary threshold, until a subsequently generated EUV energy is below the primary threshold for a fixed period of time, or until a subsequently generated EUV energy is at or below a secondary threshold below the primary threshold.
Abstract:
Disclosed is an apparatus for and method of detecting a droplet of target material in a system for generating EUV radiation in which an illumination system is used to illuminate the droplet of a target material and a detector is arranged to detect radiation from the illumination system that has been forward or side scattered by the droplet of target material.
Abstract:
A metrology system includes a light beam metrology apparatus configured to sense one or more aspects of an amplified light beam and to make adjustments to the amplified light beam based on the sensed one or more aspects; a target metrology apparatus configured to measure one or more properties of a modified target after a target has interacted with the amplified light beam, and to determine a moment when the modified target achieves a reference calibration state; and a control apparatus configured to: receive the reference calibration state and the moment at which the reference calibration state is achieved from the target metrology apparatus; determine a light beam calibration state of the amplified light beam based on the received reference calibration state and the moment at which the reference calibration state is achieved; and provide the light beam calibration state to the light beam metrology apparatus.
Abstract:
A method includes providing a target, material that, comprises a component that emits extreme ultraviolet (EUV ) light when converted to plasma; directing a first beam of radiation toward the target material to deliver energy to the target material to modify a geometric distribution of the target material to form a modified target; directing a second beam of radiation toward the modified target, the second beam of radiation converting at least part of the modified target to plasma that emits EUV light; measuring one or more characteristics associated with one or more of the target material and the modified target relative to the first beam of radiation; and controlling an amount of radiant exposure delivered to the target material from the first beam of radiation based on the one or more measured characteristics to within a predetermined range of energies.