Abstract:
Die Erfindung betrifft Verfahren zur Herstellung von Butadien aus n-Butenen mit den Schritten: A) Bereitstellung eines dampfförmigen n-Butene enthaltenden Einsatzgasstroms a1 durch Verdampfen eines flüssigen n-Butene enthaltenden Stroms a0, B) Einspeisung des dampfförmigen n-Butene enthaltenden Einsatzgasstromes a1und eines mindestens sauerstoffhaltigen Gases in mindestens eine oxidative Dehydrierzone und oxidative Dehydrierung von n-Butenen zu Butadien, wobei ein Produktgasstrom b enthaltend Butadien, nicht umgesetzte n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, hochsiedende Nebenkomponenten, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird, Ca) Abkühlung des Produktgasstroms b durch Inkontaktbringen mit einem ein organisches Lösungsmittel enthaltendem Kühlmedium, wobei das Kühlmedium eine wässrige und eine organische Phase aufweist,in mindestens einer Abkühlzone, wobei das Kühlmedium zumindest teilweisein die Abkühlzonezurückgeführt wird, Cb) Kompression des abgekühlten und gegebenenfalls an hochsiedenden Nebenkomponenten abgereicherten Produktgasstroms b in mindestens einer Kompressionsstufe, wobei mindestens ein wässriger Kondensatstrom c1 und ein Gasstrom c2 enthaltend Butadien, n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird, D) Abtrennung von nicht kondensierbaren und leicht siedenden Gasbestandteilen umfassend Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase als Gasstrom d2 aus dem Gasstrom c2 durch Absorption der C 4 -Kohlenwasserstoffe umfassend Butadien und n-Butene in einem Absorptionsmittel, wobei ein mit C 4 -Kohlenwasserstoffen beladener Absorptionsmittelstrom und der Gasstrom d2 erhalten werden, und anschließende Desorption der C 4 -Kohlenwasserstoffe aus dem beladenen Absorptionsmittelstrom, wobei ein C 4 -Produktgasstrom d1 erhalten wird, dadurch gekennzeichnet, dass zumindest ein Teil des rückgeführten Kühlmediums aus dem Schritt Ca) in einem oder mehreren indirekten Wärmetauschern mit dem flüssigen n-Butene enthaltenden Strom a0 in thermischen Kontakt gebracht wird, und zumindest ein Teil des flüssigen n-Butene enthaltenden Strom a0 durch indirekten Wärmetausch mit dem rückgeführten Kühlmedium verdampft wird.
Abstract:
Verfahren zur Herstellung von trans-angereichertem MDACH, dadurch gekennzeichnet, dass die Destillation eines MDACH-Ausgangsgemischs in Gegenwart eines Hilfsstoffs durchgeführt wird, wobei trans-angereichertes MDACH abdestilliert wird, und wobei - der Hilfsstoff eine organische Verbindung mit o einer molaren Masse von 62 bis 500 g/mol, o einem Siedepunkt, der mindestens 5 °C über dem Siedepunkt von cis,cis-2,6-Diamino-1-methylcyclohexan liegt, wobei sich die Siedepunkte jeweils auf einen Druck von 50 mbar beziehen, und o 2 bis 4 funktionellen Gruppen, bei denen es sich jeweils unabhängig voneinander um eine Alkohol-, primäre, sekundäre, oder tertiäre Aminogruppe handelt, ist, - das MDACH-Ausgangsgemisch 0 bis 100 Gew.-% 2,4-Diamino-1-methylcyclohexan(2,4-MDACH) und 0 bis 100 Gew.-% 2,6-Diamino-1-methylcyclohexan (2,6-MDACH), bezogen auf die im MDACH-Ausgangsgemisch enthaltende Gesamtmenge an MDACH (= 2,4- und 2,6-MDACH), enthält und wobei das MDACH-Ausgangsgemisch sowohl trans- als auch cis-Isomere enthält, und - trans-angereichertes MDACH ein Gemisch ist, das 0 bis 100 Gew.-% 2,4-MDACH und 0 bis 100 Gew.-% 2,6-MDACH, bezogen auf die im Gemisch enthaltende Gesamtmenge an MDACH, enthält, wobei der Anteil an trans-Isomeren im Gemisch, bezogen auf die im Gemisch enthaltene Gesamtmenge an MDACH, höher ist, als der Anteil an trans-Isomeren im MDACH-Ausgangsgemisch, bezogen auf die im MDACH-Ausgangsgemisch enthaltene Menge an MDACH.
Abstract:
Die Erfindung betrifft ein Verfahren zur Aufbereitung eines Buten und/oder Butadien, Butan, Wasserstoff und/oder Stickstoff und Kohlendioxid enthaltenden Stoffstroms (1), folgende Schritte umfassend: (a) Absorption des Buten und/oder Butadien, Butan, Wasserstoff und/oder Stickstoff und gegebenenfalls Kohlendioxid enthaltenden Stoffstroms (1) mit einem 80 bis 97 Gew.-% N-Methylpyrrolidon und 3 bis 20 Gew.-% Wasser enthaltenen Gemisch (5) wobei ein N-Methylpyrrolidon, Wasser, Buten und/oder Butadien, Butan und gegebenenfalls Kohlendioxid enthaltender Stoffstrom (9) und ein Wasserstoff und/oder Stickstoff und Butan enthaltender Stoffstrom (7) erhalten werden, (b) Extraktivdestillation des N-Methylpyrrolidon, Wasser, Buten und/oder Butadien, Butan und gegebenenfalls Kohlendioxid enthaltenden Stoffstroms (9) mit einem 80 bis 97 Gew.-% N-Methylpyrrolidon und 3 bis 20 Gew.-% Wasser enthaltenden Stoffstrom (13), wobei der N-Methylpyrrolidon, Wasser, Buten und/oder Butadien, Butan und gegebenenfalls Kohlendioxid enthaltende Stoffstrom (9) in einen N-Methylpyrrolidon, Wasser, Buten und/oder Butadien enthaltenden Stoffstrom (17) sowie einen im Wesentlichen Butan und gegebenenfalls Kohlendioxid enthaltenden Stoffstrom (15) getrennt wird. (c) Destillation des N-Methylpyrrolidon, Wasser, Buten und/oder Butadien enthaltenden Stoffstroms (17) in einen im Wesentlichen N-Methylpyrrolidon und Wasser enthaltenden Stoffstrom (23) und einen Buten und/oder Butadien enthaltenden Stoffstrom (21).
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von Butadien aus n-Butenen mit den Schritten: A) Bereitstellung eines n-Butene enthaltenden Einsatzgasstroms a; B) Einspeisung des n-Butene enthaltenden Einsatzgasstromes a und eines mindestens sauerstoffhaltigen Gases in mindestens eine oxidative Dehydrierzone und oxidative Dehydrierung von n-Butenen zu Butadien, wobei ein Produktgasstrom b enthaltend Butadien, nicht umgesetzte n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, hochsiedende Nebenkomponenten, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird; Ca) Abkühlung des Produktgasstroms b durch Inkontaktbringen mit einem Kühlmedium in mindestens einer Abkühlzone, wobei das Kühlmedium zumindest teilweise zurückgeführt wird und eine wässrige und eine organische Phase aufweist, Cb) Kompression des abgekühlten und gegebenenfalls an hochsiedenden Nebenkomponenten abgereicherten Produktgasstroms b in mindestens einer Kompressionsstufe, wobei mindestens ein wässriger Kondensatstrom c1 und ein Gasstrom c2 enthaltend Butadien, n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird; D) Abtrennung von nicht kondensierbaren und leicht siedenden Gasbestandteilen umfassend Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase als Gasstrom d2 aus dem Gasstrom c2 durch Absorption der C 4 -Kohlenwasserstoffe umfassend Butadien und n-Butene in einem Absorptionsmittel, wobei ein mit C 4 -Kohlenwasserstoffen beladener Absorptionsmittelstrom und der Gasstrom d2 erhalten werden, und anschließende Desorption der C 4 -Kohlenwasserstoffe aus dem beladenen Absorptionsmittelstrom, wobei ein C 4 -Produktgasstrom d1 erhalten wird, E) Auftrennung des C 4 -Produktstroms d1 durch Extraktivdestillation mit einem für Butadien selektiven Lösungsmittel in einen Butadien und das selektive Lösungsmittel enthaltenden Stoffstrom e1 und einen n-Butene enthaltenden Stoffstrom e2; F) Destillation des Butadien und das selektive Lösungsmittel enthaltenden Stoffstroms e1 in einen im Wesentlichen aus dem selektiven Lösungsmittel bestehenden Stoffstrom f1 und einen Butadien enthaltenden Stoffstrom f2, dadurch gekennzeichnet, dass die Stufe Cb) mindestens zwei Kompressionsstufen Cba) und mindestens zwei Abkühlstufen Cbb), die als Quenchkolonnen ausgebildet sind, umfasst, wobei in den Abkühlstufen die Abkühlung durch direktes Inkontaktbringen mit einem zweiphasigen Kühlmedium, das eine wässrige und eine organische Phase aufweist, erfolgt.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von Butadien aus n-Butenen mit den Schritten: A) Bereitstellung eines n-Butene enthaltenden Einsatzgasstroms a1, B) Einspeisung des n-Butene enthaltenden Einsatzgasstromes a1, eines sauerstoffhaltigen Gases und eines sauerstoffhaltigen Kreisgasstroms a2 in mindestens eine oxidative Dehydrierzone und oxidative Dehydrierung von n-Butenen zu Butadien, wobei ein Produktgasstrom b enthaltend Butadien, nicht umgesetzte n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, hochsiedende Nebenkomponenten, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird, Ca) Abkühlung des Produktgasstroms b und gegebenenfalls zumindest teilweise Abtrennung von hochsiedenden Nebenkomponenten und von Wasserdampf, wobei ein Produktgasstrom b' erhalten wird, Cb) Kompression und Kühlung des Produktgasstroms b' in mindestens einer Kompressionsund Kühlungsstufe, wobei mindestens ein wässriger Kondensatstrom c1 und ein Gasstrom c2 enthaltend Butadien, n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird, Da) Absorption der C 4 -Kohlenwasserstoffe umfassend Butadien und n-Butene in einem aromatischen Kohlenwasserstofflösungsmittel als Absorptionsmittelstrom A1 in einer Absorptionskolonne K1 und Abtrennung von nicht kondensierbaren und leicht siedenden Gasbestandteilen umfassend Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide, aromatisches Kohlenwasserstofflösungsmittel und gegebenenfalls Inertgase als Gasstrom d2 aus dem Gasstrom c2, wobei ein mit C 4 -Kohlenwasserstoffen beladener Absorptionsmittelstrom A1' und der Gasstromd2 erhalten werden, und anschließende Desorption der C 4 -Kohlenwasserstoffe aus dem beladenen Absorptionsmittelstrom A1', wobei ein C 4 -Produktgasstrom d1 erhalten wird, Db) zumindest teilweise Rückführung des Gasstroms d2 als Kreisgasstrom a2 in die oxidative Dehydrierzone, dadurch gekennzeichnet, dass der Gehalt an aromatischem Kohlenwasserstofflösungsmittel im Kreisgasstrom a2 auf weniger als 1 Vol.-% begrenzt wird, indem der die Abtrennstufe Da) verlassende Gasstrom d2 in einer weiteren Kolonne K2 mit einem zumindest teilweise im Kreis geführten flüssigen Absorptionsmittelstrom A2 für das aromatische Kohlenwasserstofflösungsmittel A1 in Kontakt gebracht wird, und der Wassergehalt des flüssigen Absorptionsmittelstroms A2 in der Kolonne K2 auf maximal 80 Gew.-% begrenzt wird.
Abstract:
A) Bereitstellung eines Butane, 1,3-Butadien, n-Butene und iso-Buten enthaltenden Einsatzgasstromes a aus einem Steam-Cracker; B) Auftrennung des Einsatzgasstromes a durch Extraktivdestillation mit einem für 1,3- Butadien selektiven Lösungsmittel in einen 1,3-Butadien und das selektive Lösungsmittel enthaltenden Stoffstrom b1 und einen Butane, n-Butene und iso-Buten enthaltenden Stoffstrom b2; C) Abtrennung voniso-Buten aus dem Stoffstrom b2, wobei ein Butane und n-Butene enthaltender Stoffstrom c erhalten wird; D) Einspeisung des n-Butene enthaltenden Stoffstroms c, gegebenenfalls einessauerstoffhaltigen Gases und gegebenenfalls von Wasserdampf in mindestens eine Dehydrierzone und Dehydrierung von n-Butenen zu 1,3-Butadien, wobei ein Produktgasstrom d enthaltend 1,3-Butadien, nicht umgesetzte n-Butene, Butane, Wasserdampf, leicht siedende Kohlenwasserstoffe, hochsiedende Nebenkomponenten, gegebenenfalls Sauerstoff,gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird; E) Abkühlung und Kompression des Produktgasstroms d, wobei mindestens ein wässriger Kondensatstrom e1 und ein Gasstrom e2 enthaltend 1,3-Butadien, n-Butene, Butane, Wasserdampf, gegebenenfalls Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird; Fa) Abtrennung von nicht kondensierbaren und leicht siedenden Gasbestandteilen umfassend gegebenenfalls Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase als Gasstrom f2 aus dem Gasstrom e2 durch Absorption der C 4 -Kohlenwasserstoffe umfassend 1,3-Butadien und n-Butene in einem Absorptionsmittel, wobei ein mit C 4 -Kohlenwasserstoffen beladener Absorptionsmittelstrom und der Gasstrom f2 erhalten werden, und Fb)anschließende Desorption der C 4 -Kohlenwasserstoffe aus dem beladenen Absorptionsmittelstrom, wobei ein C 4 -Kohlenwasserstoffstrom f1 erhalten wird; G)Auftrennung des C 4 -Kohlenwasserstoffstrom f1 durch Extraktivdestillation mit einem für 1,3-Butadien selektiven Lösungsmittel in einen 1,3-Butadien und das selektive Lösungsmittel enthaltenden Stoffstrom g1 und einen Butane und n-Butene enthaltenden Stoffstrom g2.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Benzol durch Dealkylierung von ein- und mehrfach Alkyl-substituierten Benzolen mit 7 bis 12 Kohlenstoffatomen in Gegenwart eines heterogenen Katalysators und Wasserdampf.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von Butadien aus n-Butenen mit den Schritten: A) Bereitstellung eines n-Butene enthaltenden Einsatzgasstroms a1 enthaltend 1-Buten, 2- Butene und iso-Buten, B) Einspeisung des n-Butene enthaltenden Einsatzgasstromes a1, eines sauerstoffhaltigen Gases und eines sauerstoffhaltigen Kreisgasstroms a2 in mindestens eine oxidative Dehydrierzone und oxidative Dehydrierung von n-Butenen zu Butadien, wobei ein Produktgasstrom b enthaltend Butadien, nicht umgesetzte n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, hochsiedende Nebenkomponenten, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird, Ca) Abkühlung des Produktgasstroms b und gegebenenfalls zumindest teilweise Abtrennung von hochsiedenden Nebenkomponenten und von Wasserdampf, wobei ein Produktgasstrom b'erhalten wird, Cb) Kompression und Kühlung des Produktgasstroms b'in mindestens einer Kompressions- und Kühlungsstufe, wobei mindestens ein wässriger Kondensatstrom c1 und ein Gasstrom c2 enthaltend Butadien, n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird, Da) Absorption der C 4 - Kohlenwasserstoffe umfassend Butadien und n-Butene in einem aromatischen Kohlenwasserstofflösungsmittel als Absorptionsmittel und Abtrennung von nicht kondensierbaren und leicht siedenden Gasbestandteilen umfassend Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide, aromatisches Kohlenwasserstofflösungsmittel und gegebenenfalls Inertgase als Gasstrom d2 aus dem Gasstrom c2, wobei ein mit C 4 - Kohlenwasserstoffen beladener Absorptionsmittelstrom und der Gasstrom d2 erhalten werden, und anschließende Desorption der C 4 - Kohlenwasserstoffe aus dem beladenen Absorptionsmittelstrom, wobei ein C 4 - Produktgasstrom d1 erhalten wird, Db) optional zumindest teilweise Rückführung des Gasstroms d2 als Kreisgasstrom a2 in die oxidative Dehydrierzone, dadurch gekennzeichnet, dass der Einsatzgasstrom a1 einem Pufferbehälter entnommen wird, der von einem Einsatzstrom a0 enthaltend 15bis 30 Vol.-% 1-Buten, 50 bis 80 Vol.-% 2-Butene und 0 bis 5Vol.-% iso-Buten mit zeitlich sich ändernder Zusammensetzung gespeist wird, wodurch die Zusammensetzung des Einsatzgasstromes a1 geringeren zeitlichen Schwankungen unterworfen ist als die Zusammensetzung des Einsatzstroms a0.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von Butadien aus n-Butenen mit den Schritten: A) Bereitstellung eines n-Butene enthaltenden Einsatzgasstroms a; B) Einspeisung des n-Butene enthaltenden Einsatzgasstromes a und eines sauerstoffhaltigen Gases in mindestens eine oxidative Dehydrierzone und oxidative Dehydrierung von n-Butenen zu Butadien, wobei ein Produktgasstrom b enthaltend Butadien, nicht umgesetzte n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, hochsiedende Nebenkomponenten, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird; Ca) Abkühlung des Produktgasstroms b durch Inkontaktbringen mit einem Kühlmittel und Kondensation zumindest eines Teils der hochsiedenden Nebenkomponenten; Cb) Kompression des verbleibenden Produktgasstroms b in mindestens einer Kompressionsstufe, wobei mindestens ein wässriger Kondensatstrom c1 und ein Gasstrom c2 enthaltend Butadien, n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird; Da) Abtrennung von nicht kondensierbaren und leicht siedenden Gasbestandteilen umfassend Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase als Gasstrom d2 aus dem Gasstrom c2 durch Absorption der C 4 -Kohlenwasserstoffe umfassend Butadien und n-Butene in einem Absorptionsmittel, wobei ein mit C 4 -Kohlenwasserstoffen beladener Absorptionsmittelstrom und der Gasstrom d2 erhalten werden, und Db) anschließende Desorption der C 4 -Kohlenwasserstoffe aus dem beladenen Absorptionsmittelstrom in einer Desorptionskolonne, wobei ein C 4 -Produktgasstrom d1 erhalten wird, dadurch gekennzeichnet, dass der Desorptionskolonne ein Methacrolein enthaltender Seitenabzugsstrom entnommen wird.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von Butadien aus n-Butenen mit den Schritten: A) Bereitstellung eines n-Butene enthaltenden Einsatzgasstroms a; B) Einspeisung des n-Butene enthaltenden Einsatzgasstromes a und eines sauerstoffhaltigen Gases in mindestens eine Dehydrierzone und oxidative Dehydrierung von n-Butenen zu Butadien, wobei ein Produktgasstrom b enthaltend Butadien, nicht umgesetzte n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird; C) Abkühlung und Kompression des Produktgasstroms b in mindestens einer Kompressionsstufe, wobei mindestens ein Kondensatstrom c1 enthaltend Wasser und ein Gasstrom c2 enthaltend Butadien, n-Butene, Wasserdampf, Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase erhalten wird; D) Abtrennung von nicht kondensierbaren und leicht siedenden Gasbestandteilen umfassend Sauerstoff, leicht siedende Kohlenwasserstoffe, gegebenenfalls Kohlenstoffoxide und gegebenenfalls Inertgase als Gasstrom d2 aus dem Gasstrom c2 durch Da) Absorption der C 4 -Kohlenwasserstoffe umfassend Butadien und n- Butene in einem hochsiedenden Absorptionsmittel, wobei ein mit C 4 - Kohlenwasserstoffen beladener Absorptionsmittelstrom und der Gasstrom d2 erhalten werden, Db) Entfernung von Sauerstoff aus dem mit C 4 -Kohlenwasserstoffen beladenen Absorptionsmittelstrom durch Strippung mit einem Inertgas, und Dc) Desorption der C 4 -Kohlenwasserstoffe aus dem beladenen Absorptionsmittelstrom, wobei ein C 4 -Produktgasstrom d1 erhalten wird, der im Wesentlichen aus C 4 -Kohlenwasserstoffen besteht und weniger als 100 ppm Sauerstoff umfasst. E) Auftrennung des C 4 -Produktstroms d1durch Extraktivdestillation mit einem für Butadien selektiven Lösungsmittel in einen Butadien und das selektive Lösungsmittel enthaltenden Stoffstrom e1 und einen n-Butene enthalten- den Stoffstrom e2; F) Destillation des Butadien und das selektive Lösungsmittel enthaltenden Stoffstroms e1 in einen im Wesentlichen aus dem selektiven Lösungsmittel bestehenden Stoffstrom f1 und einen Butadien enthaltenden Stoffstrom f2.