Abstract:
Stabilized porous silicon particles are disclosed. The particles include a porous silicon particle comprising a plurality of interconnected silicon nanoparticles and (i) a heterogeneous layer comprising a discontinuous SiC coating that is discontinuous across a portion of pore surfaces and across a portion of an outer surface of the porous silicon particle, and a continuous carbon coating that covers outer surfaces of the discontinuous SiC coating, and remaining portions of the pore surfaces and the outer surface of the porous silicon particle, or (ii) a continuous carbon coating on surfaces of the porous silicon particle, including the outer surface and pore surfaces. Methods of making the stabilized porous silicon particles also are disclosed.
Abstract:
Electrolytes for lithium ion batteries with carbon-based, silicon-based, or carbon- and silicon-based anodes include a lithium salt; a nonaqueous solvent comprising at least one of the following components: (i) an ester, (ii) a sulfur-containing solvent, (iii) a phosphorus-containing solvent, (iv) an ether, (v) a nitrile, or any combination thereof, wherein the lithium salt is soluble in the solvent; a diluent comprising a fluoroalkyl ether, a fluorinated orthoformate, a fluorinated carbonate, a fluorinated borate, or a combination thereof, wherein the lithium salt has a solubility in the diluent at least 10 times less than a solubility of the lithium salt in the solvent; and an additive having a different composition than the lithium salt, a different composition than the solvent, and a different composition than the diluent.
Abstract:
A solid-state lithium ion battery is disclosed. The battery includes an anode containing an anode active material. The battery also includes a cathode containing a cathode active material. The battery further includes a solid-state electrolyte material. The electrolyte material contains a salt or salt mixture with a melting point below approximately 300 degrees Celsius. The battery has an operating temperature of less than about 80 degrees Celsius
Abstract:
Animal transmitters (10) are provided that can include: a transducer (26, 108) configured to transmit a signal; process circuitry (24, 102) coupled to the transducer (26, 108); and an energy harvesting element (22) coupled to the process circuitry (24, 102). Animals having a transmitter (10) coupled thereto are also provided with the transmitter including an energy harvesting element (22) in operational alignment with the animal's musculoskeletal system. Methods for transmitting the location of an animal are also provided with the methods including: coupling a transmitter (10) powered by an energy harvesting element (22) to the animal; and monitoring the transmissions of the transmitter.