Abstract:
A method of mitigating refrigerant leaks within a refrigeration system that includes: detecting a leak of a refrigerant from a refrigeration system; closing a first valve to inhibit a fluid flow of the refrigerant between an evaporator and a condenser fluidly connected to the evaporator; and operating a compressor to direct another fluid flow of the refrigerant from the evaporator to the compressor.
Abstract:
In a method of operating a compressor at startup, the compressor is rotated in reverse for a brief period of time. The compressor is of a type that does not compress liquid when rotated in reverse. The purpose is to boil off the liquid refrigerant from the oil by heating and agitating the mixture of oil and refrigerant in the oil sump. This results in a much more benign forward start as less refrigerant is drawn into the compressor pump and the amount of oil pumped out of the compressor on start up is minimized. Also, the viscosity of oil is increased and lubrication of the bearings is improved. After a short period of time reverse rotation is stopped and the compressor can start rotating in the forward direction. The short period of time of reverse rotation is varied based upon system conditions. In one embodiment, the variation can occur by reducing the reverse run time as ambient temperature increases. In another embodiment, electrical conditions such as incoming voltage and/or a ratio of voltage to frequency can be utilized to change the reverse run time.
Abstract:
A refrigerant vapor compression system includes a compression device having at least a first compression stage and a second compression stage arranged in series refrigerant flow relationship. A first refrigerant heat rejection heat exchanger is disposed downstream with respect to refrigerant flow of the second compression stage. A first refrigerant intercooler is disposed intermediate the first compression stage and the second compression stage. The first refrigerant intercooler is disposed downstream of the first refrigerant heat rejection heat exchanger with respect to the flow of the first secondary fluid. An economizer includes a vapor line in fluid communication with a suction inlet to the second compression stage. A second refrigerant heat rejection heat exchanger is disposed intermediate with respect to refrigerant flow of the second compression stage and the first refrigerant heat rejection heat exchanger. A second refrigerant intercooler is disposed intermediate the first compression stage and the second compression.
Abstract:
A refrigeration system (30) comprises a compressor (36) for driving the refrigerant along a refrigerant flowpath (34) and having a first stage (36A) and a second stage (36B). A first heat exchanger (38) is along the refrigerant flowpath. An intercooler heat exchanger (120) is along the refrigerant flowpath. A second heat exchanger (42) is along the refrigerant flowpath. An additional heat exchanger (170) is along the refrigerant flowpath between the compressor second stage and the first heat exchanger.
Abstract:
A refrigerant system includes a compressor that has safe operating limits that are also built into a refrigerant system control to protect the compressor. Under certain conditions, these safe operational limits may be changed to allow the compressor to operate beyond the safety limits at least for a period of time.
Abstract:
A compact heat exchanger assembly for a refrigeration system includes a heat rejection heat exchanger assembly and a heat absorption heat exchanger assembly. The heat rejection heat exchanger assembly includes a primary heat exchanger and a secondary heat exchanger. The primary heat exchanger has a tube bank extending between a first manifold and a second manifold. The tube bank being provided with at least one bend such that the primary heat exchanger has a generally curvilinear shape. The secondary heat exchanger is disposed between the first manifold and the second manifold.
Abstract:
A ventilation system includes a leak sensor (52), a controller (56), and at least one of an injection port (70) and a vent door. The leak sensor (52) is disposed within an interior space of a refrigerated container (10) and is arranged to provide a signal indicative of a concentration of a refrigerant (18) within the interior space. The controller (56) is arranged to receive the signal. At least one of the injection port (70) and the vent door is disposed on at least one of a floor (30), a front wall (32), and a side wall (38) of the refrigerated container (10).