Abstract:
A method and apparatus for performing a fiscal measurement of at least one characteristic of an aerated fluid flowing within a pipe is provided, wherein the apparatus includes at least one metering device for determining the mixture density of the fluid, the speed of sound of the fluid and the speed of sound of the liquid portion of the fluid, wherein the at least one metering device generates meter data responsive to the mixture density of the fluid, the speed of sound of the fluid and the speed of sound of the liquid portion of the fluid. The apparatus further includes a processing device communicated with the at least one metering device, wherein the processing device receives the meter data and processes the meter data to generate the at least one fiscal measurement.
Abstract:
An apparatus (10) is provided that measures the Speed of sound propagating in a multiphase mixture to determine parameters, such as mixture quality, particle size, vapor/mass ratio, liquid/vapor ratio, mass flow rate, enthalpy and volumetric flow rate of the flow in a pipe or unconfined space, for example, using acoustic and/or dynamic pressures. The apparatus includes a pair of ultrasonic transducers disposed axially along the pipe for measuring the transit time of an ultrasonic signal to propagate from one ultrasonic transducer to the other ultrasonic transducer. A signal process, responsive to said transit time signal, provides a signal representative of the speed of sound of the mixture. An SOS processing unit then provides an output signal indicative of at least one Parameter of the mixture flowing through the pipe. The frequency of the ultrasonic signal is sufficiently low to minimize scatter from particle/liquid within the mixture. The frequency based sound speed is determined utilizing a dispersion model to determine the at least one parameter of the fluid flow and/or mixture.
Abstract:
A device for measurement of entrained and dissolved gas has a first module arranged in relation to a process line for providing a first signal containing information about a sensed entrained air/gas in a fluid or process mixture flowing in the process line at a process line pressure. The device features a combination of a bleed line, a second module and a third module. The bleed line is coupled to the process line for bleeding a portion of the fluid or process mixture from the process line at a bleed line pressure that is lower than the process pressure. The second module is arranged in relation to the bleed line, for providing a second signal containing information about a sensed bleed line entrained air/gas in the fluid or process mixture flowing in the bleed line. The third module responds to the first signal and the second signal, for providing a third signal containing information about a dissolved air/gas flowing in the process line based on a difference between the sensed entrained air/gas and the sensed bleed line entrained air/gas.
Abstract:
A method and apparatus are provided for calibrating a flow meter having an array of sensors arranged in relation to a pipe that measures a flow rate of a fluid flowing in the pipe. The method features the step of calibrating the flow rate using a calibration correction function based on one or more parameters that characterize either the array of sensors, the pipe, the fluid flowing in the pipe, or some combination thereof. The calibration correction function depends on either a ratio t/lambda of the pipe wall thickness (t) and the pipe inner diameter (D); a ratio t/X of the pipe wall thickness (t) and the eddie wavelength (lambda) of the fluid; a Reynolds number (rhoUD/µ) that characterizes the fluid flow in the pipe; a ratio Deltax/D of the sensor spacing (Deltax) and the pipe inner diameter (D); a ratio fDeltax/Umeas of usable frequencies in relation to the sensor spacing (Deltax) and the raw flow rate (Umeas); or some combination thereof. The apparatus takes the form of a flow meter having a calibration correction function module performing the aforementioned functionality.
Abstract:
Non-intrusive pressure sensors (14-18) for measuring unsteady pressures within a pipe (12) include an optical fiber (10) wrapped in coils (20-24) around the circumference of the pipe (12). The length or change in the length of the coils (20-24) is indicative of the unsteady pressure in the pipe. Bragg gratings (310-324) impressed in the fiber (10) may be used having reflection wavelength lambda that relate to the unsteady pressure in the pipe. One or more of sensors (14-18) may be axially distributed along the fiber (10) using wavelength division multiplexing and/or time division multiplexing.
Abstract:
In a method for monitoring a fluid flowing in a pipeline, a dynamic model of the flowing fluid is provided. At least one operational parameter forming part of the dynamic model is provided for measurement. At least one sonar-based sensor is coupled to the pipeline and is operable to measure the operational parameter. This sensor is also operable to generate signals indicative of the operational parameter. A controller is in communication with the sensor and is associated with the dynamic model. The controller receives the signals generated by the sensor, interprets and compares these signals to the dynamic model, and determines when the operational parameter has deviated from values corresponding to the operational parameter forming part of the dynamic model. The operational parameter can be a speed of sound of the fluid flowing in the pipeline, pressure, temperature, pump speed, flow rate, or the like.
Abstract:
A flow measuring system is provided that provides at least one of a compensated mass flow rate measurement and a compensated density measurement. The flow measuring system includes a gas volume fraction meter in combination with a coriolis meter. The GVF meter measures acoustic pressures propagating through the fluids to measure the speed of sound a mix propagating through the fluid to calculate at least gas volume fraction of the fluid and/or the reduced natural frequency. For determining an improved density for the coriolis meter, the calculated gas volume fraction and/or the reduced natural frequency. For determining an improved density for the coriolis meter, the calculated gas volume fraction and/or reduced frequency is provided to a processing unit. The improved density is determined using analytically derived or empirically derived density calibration models (or formulas derived therefore), which is a function of the measured natural frequency and at least one of the determined FV, reduced frequency and speed of sound, or any combination thereof. The gas volume fraction (GVF) meter may include a sensing device having a plurality of strain-based or pressure sensors spaced axially along the pipe for measuring the acoustic pressures propagating through the flow.
Abstract:
A probe 10,170 is provided that measures the speed of sound and/or vortical disturbances propagating in a single phase fluid flow and/or multiphase mixture to determine parameters, such as mixture quality, particle size, vapor/mass ratio, liquid/vapor ratio, mass flow rate, enthalpy and volumetric flow rate of the flow in a pipe or unconfined space, for example, using acoustic and/or dynamic pressures. The probe includes a spatial array of unsteady pressure sensors 15 - 18 placed at predetermined axial locations x1-xN disposed axially along a tube 14.for measuring at least one parameter of a saturated vapor/liquid mixture 12, such as steam, flowing in the tube 14. The pressure sensors 15-18 provide acoustic pressure signals P1(t)-PN(t) to a signal processing unit 30 which determines the speed of sound amix propagating through of the saturated vapor/liquid mixture 12 in the tube 14 using acoustic spatial array signal processing techniques. Frequency based sound speed is determined utilizing a dispersion model to determine the parameters of interest.
Abstract:
A configurable multi-function flow measurement apparatus is provided that can selectably function to measure the speed of sound propagating through a fluid flowing within a pipe and/or to measure pressures disturbances (e.g. vortical disturbances or eddies) moving with a fluid to determine respective parameters of the flow propagating through a pipe and detects the health of an industrial process. The configurable flow measurement device can also be selectable to function as a system diagnostic meter that provides a diagnostic signal indicative of the health of the industrial process, namely health of pumps, valves, motors and other devices in an industrial flow loop. The apparatus includes a sensing device that includes an array of strained-based or pressure sensors used to measure the acoustic and convective pressure variations in the flow to determine desired parameters. In response to a remote or local configuration signal, a control logic selects the desired function of the flow measurement apparatus.
Abstract:
A apparatus (10,110) is provided that measures the speed of sound and/or vortical disturbances propagating in a fluid or mixture having entrained gas/air to determine the gas volume fraction of the flow (12) propagating through a pipes and compensating or correcting the volumetric flow measurement for entrained air. The GVF meter includes and array of sensor disposed axially along the length of the pipe. The GVF measures the speed of sound propagating through the pipe and fluid to determine the gas volume fraction of the mixture using array processing. The GVF meter can be used with an electromagnetic meter and a consistency meter to compensate for volumetric flow rate and consistency measurement respective, to correct for errors due to entrained gas/air.