Abstract:
Electronic system (100) including a controller (402), which provides compatibility between an electronic light source (410) and a trailing edge dimmer (404). The controller is capable of predicting an estimated occurrence
Abstract:
A system and method includes a controller that is configured to coordinate (i) a low impedance path for a dimmer current, (ii), control of switch mode power conversion and (iii) an inactive state to, for example, to allow a dimmer to function normally from cycle to cycle of an alternating current (AC) supply voltage. In at least one embodiment, the dimmer functions normally when the dimmer conducts at a correct phase angle indicated by a dimmer input setting and avoids prematurely resetting while conducting. In at least one embodiment, by coordinating functions (i), (ii), and (iii), the controller controls a power converter system that is compatible with a triac-based dimmer. In at least one embodiment, the controller coordinates functions (i), (ii), and (iii) in response to a particular dimming level indicated by a phase cut, rectified input voltage supplied to the power converter system.
Abstract:
An electronic system (200) includes two power supplies (202, 210) to supply an operating (VDD) voltage to a switching power converter. The first power supply (202), referred to as a start-up power supply, includes a first source follower transistor (212) to conduct a start-up current for a controller (204) and supply an operating voltage for the controller. The controller controls operation of the switching power converter. A second power supply (210), referred to as an auxiliary power supply, includes a second source follower transistor (218) to conduct a steady-state operational current for the controller and supply an operating voltage for the controller. In at least one embodiment, once the second power supply begins supplying the operating voltage to the controller, the start-up power supply automatically ceases supplying the start-up current to the controller.
Abstract:
A lighting system includes time division light output sensing and adjustment for ambient light. In at least one embodiment, time division light output sensing involves modulating power to a light emitting diode (LED) set, and the set of LEDs includes one or more LEDs. In at least one embodiment, each LED in the LED set is included in a single lamp, and, in at least one embodiment, the set of LEDs is contained in multiple lamps. In at least one embodiment, for each lamp, a controller modulates power to the LED set by selectively reducing power to the LED set using time division algorithm to allow a light sensor to sense the brightness of ambient light with a reduced contribution from the LED set. In at least one embodiment, a lighting system also includes time division light output sensing and adjustment for different spectra LEDs.
Abstract:
A power control system includes a current sense resistor located on an output side of a switching power converter. By locating the current sense resistor on the output side of the switching power converter, the current sense resistor conducts a sense current when a control switch of the switching power converter is nonconductive. Since a duty cycle of the control switch is larger for a low input voltage than for a higher input voltage, the current sense resistor conducts current for a shorter time duration for low input voltages than for higher input voltages. Thus, the root mean square (RMS) of a sense current in the current sense resistor and, thus, power dissipation by the current sense resistor, is lower during low input voltages than power dissipation in conventionally located current sense resistors. The RMS of the sense current is approximately constant across a full range of input voltages.
Abstract:
A video decoder in which the video source clock is generated entirely in the digital domain is disclosed herein. By creating a virtual version of the source clock in a numeric oscillator, the amount of noise in the system is substantially reduced. Furthermore, by transferring the digitized video signal, sampled with an asynchronous crystal clock, into the source clock domain, the accuracy of the brightness (amplitude) and color (phase) information can be greatly enhanced.
Abstract:
A digital-to-analog converter ("DAC") system utilized chopping modulation technology to remove 1/f and other baseband noise from a baseband of a signal of interest. Chopping modulation and demodulation circuitry of the DAC operate at a chopping frequency equal to approximately one-half of a digital input signal sampling frequency. Chopping at one-half the sampling frequency allows fold back into the baseband of the input signal's frequency components and reduces fold back of noise, such as quantization noise, residing outside the baseband. In a further embodiment, a notch filter attenuates signals having frequencies around the chopping frequency prior to chopping to reduce fold back of noise into the baseband due to parasitic modulation. Coordination of chopping timing also reduces noises in the output of the DAC system.
Abstract:
A power control system includes a transformer and a controller regulates a current on a secondary-side of the transformer based on a primary-side signal value. In at least one embodiment, the secondary-side current is a current out of a filter coupled to a rectifier and the secondary-side of the transformer and into a load. In at least one embodiment, the primary-side signal value is a sample of a current in the primary-side windings of the transformer. In at least one embodiment, the primary- side signal value represents a sample value of a primary-side transformer current. Proper timing of sampling the primary-side signal value substantially eliminates contributions of a transformer magnetizing current from the primary-side transformer current sample. Sampling the primary-side signal value when contributions of the transformer magnetizing current are substantially eliminated allows at least an average of the secondary-side current to be determined from the primary-side signal value.
Abstract:
The analog-to-digital (ADC) delta sigma modulators in the signal processing systems described utilize comparator number reduction techniques to improve a delta sigma modulator quantizer. The delta sigma modulator generates one quantization output signal per delta sigma modulator output cycle. A quantizer of the delta sigma modulator includes one or more comparators, that each makes at least two comparisons per delta sigma modulator output cycle. The one or more comparators compare a quantizer input signal against one or more thresholds. A successive reference generator determines the one or more thresholds for the one or more comparators wherein each of the one or more thresholds during a later one of the at least two comparisons is in conformity with results of an earlier one of the at least two comparisons. Redundant and other iterative comparison techniques and threshold generation techniques are used to efficiently reduce the number of comparators in the quantizer while maintaining accuracy.
Abstract:
A digital-to-analog converter ("DAC") system utilizes notch filters and chopping modulation technology to remove 1/f and other baseband noise from a baseband of a signal of interest. Chopping modulation and demodulation circuitry of the DAC operate at a chopping frequency and all harmonics equal to approximately one-half of a digital input signal sampling frequency. A notch filter attenuates signals having frequencies around the chopping frequency prior to chopping to reduce fold back of noise into the baseband due to parasitic modulation. Another notch filter attenuating signals having frequencies around twice the chopping frequency further reduces fold back of noise into the baseband.