Abstract:
The overall performance of an ANC system may be improved by configuring the ANC system to perform adaption in the frequency domain. The ANC systems may be configured to update an algorithm of an adaptive filter based, at least in part, on the first input signal, the second input signal, and a feedback signal that is based on an output of the adaptive filter. Updating may include changing parameters of the algorithm based on a SDR based, at least in part, on the first input signal. Updating may also include normalizing a step size and processing at least full band information for the input signal in a frequency domain to generate coefficient values for the algorithm. Updating may also include applying a frequency domain magnitude constraint on adaptive filter coefficients.
Abstract:
The overall performance of an ANC system may be improved by configuring the ANC system to perform adaption in the frequency domain. The ANC systems may be configured to update an algorithm of an adaptive filter based, at least in part, on the first input signal, the second input signal, and a feedback signal that is based on an output of the adaptive filter. Updating may include changing parameters of the algorithm based on a SDR based, at least in part, on the first input signal. Updating may also include normalizing a step size and processing at least full band information for the input signal in a frequency domain to generate coefficient values for the algorithm. Updating may also include applying a frequency domain magnitude constraint on adaptive filter coefficients.
Abstract:
A variable resistor may be coupled between a reference voltage source and components of an integrated circuit to reduce issues relating to thermal noise from a reference voltage signal generated by the reference voltage source. The variable resistor may be set to a low level during a first time period and a high level during a second time period, in which the time periods correspond to a sampling period of a switched-capacitor circuit. The low resistance time period may allow quick settling of an input reference voltage signal, whereas the high resistance time period may reduce a bandwidth of noise on a sampling capacitor coupled to the reference voltage signal. The variable resistor and switched-capacitor network may be used in an analog-to-digital converter (ADC), such as in audio circuits.
Abstract:
An analog-to-digital converter (ADC) may include capability to sense and/or compensate for undesired effects when receiving input from a microphone. For example, a sense node may be provided between differential inputs, and that sense node separated from the differential inputs by two or more switches. The sense node may allow for a measurement of an average voltage of the differential inputs. The average voltage may be obtained activating the switches to sample the sampling capacitors coupled to the differential inputs. That average voltage may be used as common mode (CM) data. A controller may receive the CM data, along with differential mode (DM) data, and use the CM and DM data to determine undesired effects, such as DC or AC mismatch at the microphone interface. The controller may then generate a signal for applying compensation to the differential inputs to reduce or eliminate the undesired effects.
Abstract:
An electronic system and method include a controller (206) to actively control power transfer from a primary winding (110) of a switching power converter to an auxiliary-winding (212) of an auxiliary power supply 214). The switching power converter is controlled and configured such that during transfer of power to the auxiliary-winding (212), the switching power converter does not transfer charge to one or more secondary-windings (116) of the switching power converter. Thus, the switching power converter isolates one or more secondary transformer winding currents (is) from an auxiliary-winding current. By isolating the charge delivered to the one or more secondary-windings (116) from charge delivered to the auxiliary-winding (212), the controller can accurately determine an amount of charge delivered to the secondary-windings (116) and, thus, to a load (108).
Abstract:
An electronic system and method include a controller to actively control power transfer from a primary winding of a switching power converter to an auxiliary-winding of an auxiliary power supply. The switching power converter is controlled and configured such that during transfer of power to the auxiliary-winding, the switching power converter does not transfer charge to one or more secondary-windings of the switching power converter. Thus, the switching power converter isolates one or more secondary transformer winding currents from an auxiliary-winding current. By isolating the charge delivered to the one or more secondary-windings from charge delivered to the auxiliary-winding, the controller can accurately determine an amount of charge delivered to the secondary-windings and, thus, to a load.
Abstract:
In at least one embodiment, a lighting system includes one, some, or all of a switch path, link path, and flyback path power dissipation circuits to actively and selectively control power dissipation of excess energy in a switching power converter of the lighting system. The flyback path power dissipation circuit dissipates power through a flyback path of the switching power converter. In at least one embodiment, the lighting system controls power dissipation through the flyback path by controlling a transformer primary current in the flyback path and, for example, limiting the primary current with a current source and dissipating power in the flyback switch and the current source.
Abstract:
Electronic system (100) including a controller (402), which provides compatibility between an electronic light source (410) and a trailing edge dimmer (404). The controller is capable of predicting an estimated occurrence
Abstract:
In at least one embodiment, the controller senses a leading edge, phase cut AC input voltage value to a switching power converter during a cycle of the AC input voltage. The controller senses the voltage value at a time prior to a zero crossing of the AC input voltage and utilizes the voltage value to determine the approximate zero crossing. In at least one embodiment, by determining an approximate zero crossing of the AC input voltage, the controller is unaffected by any disturbances of the dimmer that could otherwise make detecting the zero crossing problematic. The particular way of determining an approximate zero crossing is a matter of design choice. In at least one embodiment, the controller approximates the AC input voltage using a function that estimates a waveform of the AC input voltage and determines the approximate zero crossing of the AC input voltage from the approximation of the AC input voltage.
Abstract:
In at least one embodiment, the controller senses a leading edge, phase cut AC input voltage value to a switching power converter during a cycle of the AC input voltage. The controller senses the voltage value at a time prior to a zero crossing of the AC input voltage and utilizes the voltage value to determine the approximate zero crossing. In at least one embodiment, by determining an approximate zero crossing of the AC input voltage, the controller is unaffected by any disturbances of the dimmer that could otherwise make detecting the zero crossing problematic. The particular way of determining an approximate zero crossing is a matter of design choice. In at least one embodiment, the controller approximates the AC input voltage using a function that estimates a waveform of the AC input voltage and determines the approximate zero crossing of the AC input voltage from the approximation of the AC input voltage.