Abstract:
In one embodiment, an HTTP streaming session may be initiated at a client device in a network. The client device may have a buffer and may be configured to request and receive one or more data segments over HTTP from an HTTP server. A first data segment at a first data source rate may be requested and subsequently received. The first data segment may be stored in the buffer. A second data source rate may then be calculated based on a storage level in the buffer, and a second data segment at the second data source rate may be requested.
Abstract:
A method is provided in one example embodiment and includes receiving media data at an adaptive streaming client; updating an estimated available bandwidth associated with a media stream associated with the media data; filtering the estimated available bandwidth; mapping the filtered estimated available bandwidth to a media bitrate for the media stream; and updating a target segment delay that is to control time intervals between consecutive segment downloads of the media stream.
Abstract:
Various implementations disclosed herein enable a more efficient allocation of one or more shared network resources (e.g., bandwidth, memory, processor time, etc.) amongst a number of client devices based on media content data complexity and client device resource constraints in order to better manage perceptual playback quality of adaptive streaming content. In some implementations, a method includes aligning sequences of one or more temporal segments; and, selecting segment representations for each temporal segment based on a combination of the sequence alignment and perceptual quality level values associated with available segment representations, such that a combination of resulting perceptual quality levels satisfies a joint quality criterion. Each sequence is associated with one of a number of client devices sharing a network resource. The one or more temporal segments of each sequence are used to provide segment representations of media content data to one of the client devices.
Abstract:
Various implementations disclosed herein enable a more efficient allocation of one or more shared network resources amongst a plurality of client devices based on media content complexity and client device resource status in order to better manage perceptual playback quality. In some implementations, a method includes obtaining a plurality of resource constraint values associated with a plurality of client devices sharing a network resource, and jointly determining a respective encoding rate level selection and a corresponding resource allocation for each of the plurality of client devices based on a combination of one or more resource constraint values and the assessment of the respective perceptual quality level values, such that a combination of resulting quality levels satisfies a joint quality criterion.
Abstract:
Techniques for determining a range between a wireless station (STA) and a wireless access point (AP) using channel state information are described. An AP determines channel state information corresponding to an STA. The AP determines, based on the channel state information, one or more fine timing measurement (FTM) parameters. A plurality of FTM messages are transmitted between the AP and the STA, based on the one or more FTM parameters. The STA is configured to determine an estimated range to the AP based on the plurality of FTM messages.
Abstract:
Various implementations disclosed herein enable client devices to share a network resource in order to produce more evenly distributed perceptual playback quality levels within each subscription tier. Sharing of a network resource is facilitated by providing client devices with one or more QoE distribution indicator values, which enables client device participation in the allocation of the network resource. In some implementations, a client device method includes determining a local QoE level value, and then modifying a representation selection of media content data based on the local QoE and one or more QoE distribution indicator values. The local QoE level value characterizes perceptual playback quality of media content data received by the client device using the shared network resource. The QoE distribution indicator values characterize at least in part the relative QoE values associated with a plurality of client devices sharing the shared network resource with the client device.
Abstract:
Previously known network management methods are incapable of concertedly managing respective levels of perceptual playback quality of media content data for a number client devices. In particular, previously known methods fail to regulate ABR-enabled client devices and the like that are each operating to individually consume as much of one or more shared network resources as possible without regard to the degree performance improvements. By contrast, various implementations disclosed herein provide network-centric concerted management of respective levels of perceptual playback quality of media content data on each of a number of client devices. The respective levels perceptual playback quality are concertedly managed by adjusting one or more shared network resources (e.g., bandwidth, processor time, memory, etc.). Adjustments are made in response to an aggregate quality of experience (QoE) metric characterizing a distribution of QoE levels for the client devices sharing the one or more shared network resources.
Abstract:
Previously known network management practices fail to inform network operators about client-side performance and experience issues. By contrast, various implementations disclosed herein include systems, methods and apparatuses that generate one or more shared- resource traffic quality indicator values. Each shared-resource traffic quality indicator value characterizes at least a portion of the network by assessing a number of network performance characterization values in relation to one or more capacity values of one or more shared network resources. Each network performance characterization values provides a corresponding quantitative characterization of a quality of experience associated with the use of media content data received by a respective client device. In some implementations, quality of experience is characterized by at least one of an indication of perceptual quality of media content data and an indication of continuity with which media content data is used by a respective client device at a particular subscription tier.