Abstract:
Wireless communication techniques for transmitting and receiving reference signals is described. The reference signals may include pilot signals that are transmitted using transmission resources that are separate from data transmission resources. Pilot signals are continuously transmitted from a base station to user equipment being served. Pilot signals are generated from delay-Doppler domain signals that are processed to obtain time-frequency signals that occupy a two-dimensional lattice in the time frequency domain that is non-overlapping with a lattice corresponding to data signal transmissions.
Abstract:
Techniques for performing channel estimation in an orthogonal time, frequency and space (OTFS) communication system include receiving a wireless signal comprising a data signal portion and a pilot signal portion in which the pilot signal portion includes multiple pilot signals multiplexed together in the OTFS domain, performing two-dimensional channel estimation in a time-frequency domain based on a minimum mean square error (MMSE) optimization criterion, and recovering information bits using a channel estimate obtained from the two-dimensional channel estimation.
Abstract:
Methods, systems and devices for wireless communication are described. One example method includes mapping information bits to transmission resources in a two-dimensional delay-Doppler grid In this example, the two-dimensional delay-Doppler grid includes N Doppler elements along a Doppler dimension and M delay elements along a delay dimension, and N and M are positive integers. The example method continues with converting a result of the mapping to a signal waveform, and generating an orthogonal time frequency space (OTFS) waveform by spreading the signal waveform using a spreading scheme. In some examples, the signal waveform includes an ultra-wide band (UWB) waveform.