Abstract:
A wireless communication method includes generating a pilot signal that is represented using a complex exponential signal having a first linear phase in a time dimension and a second linear phase in a frequency dimension; and transmitting the pilot signal over a wireless communication channel using transmission resources that are designated for pilot signal transmission in a legacy transmission network such as a Long Term Evolution (LTE) network.
Abstract:
Techniques for performing channel estimation in an orthogonal time, frequency and space (OTFS) communication system include receiving a wireless signal comprising a data signal portion and a pilot signal portion in which the pilot signal portion includes multiple pilot signals multiplexed together in the OTFS domain, performing two-dimensional channel estimation in a time-frequency domain based on a minimum mean square error (MMSE) optimization criterion, and recovering information bits using a channel estimate obtained from the two-dimensional channel estimation.
Abstract:
A fixed wireless access system is implemented using orthogonal time frequency space multiplexing (OTFS). Data transmissions to/from different devices share transmission resources using - delay Doppler multiplexing, time-frequency multiplexing, multiplexing at stream and/or layer level, and angular multiplexing. Time-frequency multiplexing is achieved by dividing the time-frequency plan into subgrids, with the subsampled time frequency grid being used to carry the OTFS data. Antenna implementations include a hemispherical antenna with multiple antenna elements arranged in an array to achieve multiplexing.
Abstract:
In a wireless communication network, pilot signals are transmitted over a wireless communication channel by determining a maximum delay spread for a transmission channel, determining a maximum Doppler frequency spread for the transmission channel, and allocating a set of transmission resources in a time-frequency domain to a number of pilot signals based on the maximum delay spread and the maximum Doppler frequency spread.
Abstract:
Wireless communication techniques for transmitting and receiving reference signals is described. The reference signals may include pilot signals that are transmitted using transmission resources that are separate from data transmission resources. Pilot signals are continuously transmitted from a base station to user equipment being served. Pilot signals are generated from delay-Doppler domain signals that are processed to obtain time-frequency signals that occupy a two-dimensional lattice in the time frequency domain that is non-overlapping with a lattice corresponding to data signal transmissions.
Abstract:
Orthogonal Time Frequency Space (OTFS) is a novel modulation scheme with significant benefits for 5G systems. The fundamental theory behind OTFS is presented in this paper as well as its benefits. We start with a mathematical description of the doubly fading delay-Doppler channel and develop a modulation that is tailored to this channel. We model the time varying delay-Doppler channel in the time-frequency domain and derive a new domain (the OTFS domain) where we show that the channel is transformed to a time invariant one and all symbols see the same SNR. We explore aspects of the modulation like delay and Doppler resolution, and address design and implementation issues like multiplexing multiple users and evaluating complexity. Finally we present some performance results where we demonstrate the superiority of OTFS.
Abstract:
A system and method for orthogonal time frequency space communication and waveform generation compatible with OFDM. The method includes receiving a plurality of information symbols and encoding an NxM array containing the plurality of information symbols into a two-dimensional array of modulation symbols by spreading each of the plurality of information symbols with respect to both time and frequency. The two-dimensional array of modulation symbols is then transmitted along with one or more OFDM symbols using a plurality of narrowband subcarriers.