Abstract:
Methods, systems and device for achieving synchronization in an orthogonal time frequency space (OTFS) signal receiver are described. An exemplary signal reception technique includes receiving an OTFS modulated wireless signal comprising pilot signal transmissions interspersed with data transmissions, calculating autocorrelation of the wireless signal using the wireless signal and a delayed version of the wireless signal that is delayed by a pre-determined delay, thereby generating an autocorrelation output, processing the autocorrelation filter through a moving average filter to produce a fine timing signal. Another exemplary signal reception technique includes receiving an OTFS modulated wireless signal comprising pilot signal transmissions interspersed with data transmissions, performing an initial automatic gain correction of the received OTFS wireless signal by peak detection and using clipping information, performing coarse automatic gain correction on results of a received and initial automatic gain control (AGC)-corrected signal.
Abstract:
Device, methods and systems for precoding in wireless systems using orthogonal time frequency space multiplexing are described. An exemplary method for transmitting wireless signals includes mapping data to generate a quadrature amplitude modulation (QAM) signal in a delay Doppler domain, determining a perturbation signal to minimize expected interference and noise, perturbing the QAM signal with the perturbation signal, thereby producing a perturbed signal, generating a pre-coded signal by pre-coding, using a linear pre-coder, the perturbed signal, and transmitting the pre-coded signal using an orthogonal time frequency space modulation signal scheme.
Abstract:
Co-existence between an Orthogonal Time Frequency Space (OTFS) modulation system and a Long Term Evolution (LTE) system is achieved by generating a number of transmission beams for a first group of user equipment operating using LTE, and a second group of user equipment operating using the OTFS protocol, and transmitting a first group of data packets formatted according to the LTE protocol to the first group of user equipment and a second group of data packets formatted according to the OTFS protocol to the second group of user equipment. The transmissions are performed by precoding and modulating the first group of data packets according to an LTE modulation scheme, and precoding and modulating the second group of data packets according to an OTFS modulation scheme.
Abstract:
Co-existence between an Orthogonal Time Frequency Space (OTFS) modulation system and a Long Term Evolution (LTE) system is achieved by generating a number of transmission beams for a first group of user equipment operating using LTE, and a second group of user equipment operating using the OTFS protocol, and transmitting a first group of data packets formatted according to the LTE protocol to the first group of user equipment and a second group of data packets formatted according to the OTFS protocol to the second group of user equipment. The transmissions are performed by precoding and modulating the first group of data packets according to an LTE modulation scheme, and precoding and modulating the second group of data packets according to an OTFS modulation scheme.
Abstract:
Device, methods and systems for implementing aspects of orthogonal time frequency space (OTFS) modulation in wireless systems are described. In an aspect, the device may include a surface of an object for receiving an electromagnetic signal. The surface may be structured to perform a non-electrical function for the object. The surface may generate an electrical signal from an electromagnetic signal. The electromagnetic signal may be received from a transmitter. The transmitter may map digital data to a digital amplitude modulation constellation in a time- frequency space. The digital amplitude modulation constellation may be mapped to a delay-Doppler domain and the transmitter may transmit to the surface according to an orthogonal time frequency space modulation signal scheme. The apparatus may further include a demodulator to demodulate the electrical signal to determine digital data.
Abstract:
Described are devices, systems and methods for scheduling multi-user (MU) multiple input multiple output (MIMO) transmissions in a fixed wireless access (FWA) system. One method for scheduling a large number of user devices in a wireless communication system includes a preselection process to pare down the number of user devices to be simultaneously scheduled, and then scheduling that subset of users. In an example, and assuming each user device communicates over a corresponding wireless channel, the preselection process includes determining a number of sets based on a first characteristic of the wireless channels, where each set includes at least one user device, and then determining a subset of user devices by selecting at most one user device from each of the sets. The scheduling of the selected subset of users is based on a scheduling algorithm and a second characteristic of the wireless channels.
Abstract:
Device, methods and systems for aspects of channel estimation for orthogonal time frequency space (OTFS) modulation in wireless systems are described. In an aspect, a method for wireless communication may include receiving, using multiple receive antennas, from a number of user devices, non-orthogonal pilots wherein at least some transmissions of the non-orthogonal pilots from different user devices overlap in at least some time and frequency resources, estimating individual pilots from the number of user devices by computing a pilot separation filter for each antenna, and estimating the wireless channel at time and frequency resources used by the non-orthogonal pilots by filtering the receiving signal at the multiple receiver antennas.
Abstract:
Methods, systems and devices for lattice reduction in decision feedback equalizers for orthogonal time frequency space (OTFS) modulation are described. An exemplary wireless communication method, implementable by a wireless communication receiver apparatus, includes receiving a signal comprising information bits modulated using OTFS modulation scheme. Each delay-Doppler bin in the signal is modulated using a quadrature amplitude modulation (QAM) mapping. The method also includes estimating the information bits based on an inverse of a single error covariance matrix of the signal, with the single error covariance matrix being representative of an estimation error for all delay-Doppler bins in the signal.
Abstract:
A method of reducing peak to average power ratio of uplink transmission includes, assigning a slice of transmission resource to uplink transmission from a user equipment, where all resource elements in the slice have a same Doppler value, mapping data to the slice, performing orthogonal time frequency space transformation to generate time-frequency domain data and processing the time-frequency domain data for transmission.