Abstract:
The invention provides methods for broadcasting video in a dual HDR/LDR format such that the video can be displayed in real time by both LDR and HDR display devices. Methods and devices of the invention process streams of pixels from multiple sensors in a frame-independent manner to produce an HDR video signal in real time. That HDR video signal is then tone-mapped to produce an LDR video signal, the LDR signal is subtracted from the HDR signal to calculate a residual signal, and the LDR signal and the residual signal are merged into a combined signal that is broadcast via a communications network.
Abstract:
Matching color information in an optical system can include splitting an image forming beam into a bright intensity beam and a dark intensity beam, detecting, using multiple sensors, a color value for a light component from the bright intensity beam and the dark intensity beam, determining color values for the remaining light components associated with the bright intensity beam and the dark intensity beam, and transforming the color values associated with the dark intensity beam to calibrate the color values of the dark intensity beam against the color values of the light intensity beam, the color values of the light intensity beam including color inaccuracies.
Abstract:
The invention is relates to systems and methods for high dynamic range (HDR) image capture and video processing in mobile devices. Aspects of the invention include a mobile device, such as a smartphone or digital mobile camera, including at least two image sensors fixed in a co-planar arrangement to a substrate and an optical splitting system configured to reflect at least about 90% of incident light received through an aperture of the mobile device onto the co- planar image sensors, to thereby capture a HDR image. In some embodiments, greater than about 95% of the incident light received through the aperture of the device is reflected onto the image sensors.
Abstract:
Systems and methods of the invention merge information from multiple image sensors to provide a high dynamic range (HDR) video. The present invention provides for real-time HDR video production using multiple sensors and pipeline processing techniques. According to the invention, multiple sensors with different exposures each produces an ordered stream of frame- independent pixel values. The pixel values are streamed through a pipeline on a processing device. The pipeline includes a kernel operation that identifies saturated ones of the pixel values. The streams of pixel values are merged to produce an HDR video.