Abstract:
An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
Abstract:
A method includes forming a glass article. The glass article includes a core and a clad adjacent to the core. The core includes a first glass composition. The clad includes a second glass composition different than the first glass composition. A degradation rate of the second glass composition in a reagent is greater than a degradation rate of the first glass composition in the reagent.
Abstract:
An apparatus for forming laminated sheet glass comprises a first upper pipe and a lower pipe and an adjustment mechanism comprising first and second first-upper-pipe suspension rods supported by a first horizontally extending support member, third and fourth first-upper-pipe suspension rods supported by a second horizontally extending support member the first upper pipe supported, directly or indirectly, by the first, second, third, and fourth first-upper-pipe suspension rods, a first and second lower-pipe suspension rod supported by the first horizontally extending support member and a third and fourth lower-pipe suspension rod and supported by the second horizontally extending support member, lower pipe supported, directly or indirectly, by the first, second, third, and fourth lower-pipe suspension rods, each respective rod suspended so as to be horizontally adjustable and independently vertically adjustable.
Abstract:
A flexible seal positioned between two muffles of a glass laminate fusion draw machine comprises, in order from the interior to the exterior of the muffles, a radiation shield comprising overlapping rows of refractory material, a thermal seal comprising a blanket of temperature resistance material, and an air seal comprising a sheet of high temperature elastomeric material. The seal may further comprising a secondary radiation shield positioned between the thermal seal and the air seal.
Abstract:
A glass fusion draw apparatus for molten glass stream thermal profile control, including: • a first enclosure (100); and • a first isopipe (102) situated within the first enclosure, the first enclosure can include at least one first heating element assembly (110a, 110b, 110c) integral with the wall of the first enclosure, and the at least one first heating element is in proximity to a portion of molten glass stream over-flowing the first isopipe within the enclosure. The apparatus can also include a proximity or temperature sensing system associated with the first enclosure that senses and controls the thermal gradient properties of the molten glass stream or streams in the first enclosure. A laminate fusion draw apparatus for thermal profile control of a molten glass stream is also disclosed.
Abstract:
An apparatus for forming laminated sheet glass, including: a lower pipe providing a first liquid stream that forms the core of the laminate; an first upper pipe having a pair of adjustable baffles situated between the bottom of the upper pipe and the top of the lower pipe, the first upper pipe provides a second liquid glass stream onto the first liquid glass stream that forms the clad of the laminate on the core of the laminate, the adjustable baffles being separated from the lower pipe by a gap, and the adjustable baffles control the landing angle (Φ) and drop point of the second liquid glass stream onto the first liquid glass stream. Also disclosed is a method for forming laminated sheet glass or articles thereof using the aforementioned glass laminating apparatus, as defined herein..