Abstract:
A laminated glass structure is provided that includes a non-glass substrate, a flexible glass sheet, and an adhesive. The non-glass substrate includes one or more layers of polymer-impregnated paper, an upper primary surface and a lower primary surface. The non-glass substrate also comprises an upper moisture barrier at a selected depth from the upper primary surface. The flexible glass sheet has a thickness of no greater than 0.3 mm and is laminated to the upper primary surface of the non-glass substrate with the adhesive. An optional lower moisture barrier can also be included within the non-glass substrate at a selected depth from the lower primary surface. Further, the non-glass substrate may be preconditioned at 70C for 96 hours or more prior to lamination of the flexible glass sheet to the upper primary surface of the non-glass substrate.
Abstract:
A laminate structure is provided that allows the surface renewal and rework of a device by the selective removal of layers of the laminate. The selective removal may be achieved by heating or irradiating the laminate structure, such that an adhesive layer debonds and allows the removal of a damaged layer to provide a pristine surface.
Abstract:
An apparatus comprising a stack of laminate structures, wherein adjacent laminate structures are adhered to each other, and wherein each of the laminate structures in the stack comprise a glass sheet having a thickness of less than or equal to 0.3 mm, an adhesive, and one or more layers of material provided on a portion of the glass sheet.
Abstract:
Methods provide for post processing at least one flexible glass sheet with the step of providing the glass sheet with an initial shape. The method then further includes the step of flexing the glass sheet into a secondary shape from the initial shape. The method then further includes the step of post processing the glass sheet while biasing the glass sheet into the secondary shape. The method then still further includes the step of releasing the glass sheet to at least partially return to the initial shape.
Abstract:
A method of manufacturing a glass ribbon can comprise flowing a glass-forming ribbon along a travel path. The glass-forming ribbon can comprise a first major surface and a second major surface opposite the first major surface. A thickness can be defined between the first major surface and the second major surface. The method can comprise heating the first major surface of the glass-forming ribbon at a target location of the travel path while the glass-forming ribbon is travelling along the travel path. The heating can increase a temperature of the glass-forming ribbon at the target location to a heating depth of about 250 micrometers or less from the first major surface. The method can comprise cooling the glass-forming ribbon into the glass ribbon. Prior to the heating, the glass-forming ribbon at the target location can comprise an average viscosity in a range from about 1,000 Pascal-seconds to about 1011 Pascal-seconds.
Abstract:
A method of forming a laminated glass structure includes introducing a continuous ribbon of flexible glass substrate having a thickness of no greater than about 0.3 mm to a substrate material. The substrate material has a coefficient of thermal expansion (CTE) that is greater than that of the flexible glass substrate. The flexible glass substrate is laminated to the substrate material at an elevated temperature. The substrate material is cooled to introduce a compressive stress across a thickness of the flexible glass substrate.
Abstract:
Display devices and antiglare layers that minimize glare and the appearance of sparkle are described. One type of display device includes a pixel substrate, having a pixel array, and an antiglare layer. The antiglare layer has a surface roughness with a spatial frequency such that a typical focal length of the antiglare layer is either at least four times larger than an optical distance between a surface of the array of pixels and the antiglare layer, or at least three times smaller than the optical distance between the surface of the array of pixels and the antiglare layer. In some embodiments, a pixel pitch of the array of pixels is less than 120 µm. In some embodiments, the antiglare layer may have a power spectral density that is elliptical, with a minor axis of the power spectral density aligned with a color direction of the array of pixels.