Abstract:
One or more aspects of the disclosure pertain to a laminates including a substrate, such as a glass substrate, which may be strengthened, or a sapphire substrate, and a polymeric scratch resistant layer disposed on the substrate. In one or more embodiments, where a glass substrate is utilized, the average flexural strength of the glass substrate is maintained when combined with the polymeric scratch resistant layer. The polymeric scratch resistant layer may include a polymeric diamond-like carbon. In one or more embodiments, the polymeric scratch resistant layer forms a shearable interface with the glass substrate or comprises a plurality of sub-layers and a plurality of shearable interfaces between such plurality of sub-layers. Methods for forming such laminates are also disclosed.
Abstract:
One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article retains its average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. The bridging of a crack from one of the film or the glass substrate into the other of the film or the glass substrate can be prevented by inserting a crack mitigating layer between the glass substrate and the film.
Abstract:
One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. In one or more embodiments, the interface exhibits an effective adhesion energy of about less than about 4 J/m2. In some embodiments, the interface is modified by the inclusion of a crack mitigating layer containing an inorganic material between the glass substrate and the film.
Abstract translation:本公开的一个或多个方面涉及一种包括设置在玻璃基板上的膜的制品,其可以被加强,其中膜和玻璃基板之间的界面被改性,使得制品具有改善的平均弯曲强度,以及 该片保留了其应用的关键功能特性。 膜的一些关键功能特性包括光学,电学和/或机械性质。 在一个或多个实施方案中,界面表现出约小于约4J / m 2的有效粘附能。 在一些实施方案中,通过在玻璃基底和膜之间包含含有无机材料的裂纹缓解层来修饰界面。
Abstract:
One or more aspects relate to an article that includes a glass substrate having a first average strain-to-failure; and a crack mitigating layer disposed on a first major surface of the substrate forming a first interface. The article also includes a film disposed on the crack mitigating layer forming a second interface and having a second average strain-to-failure that is less than the first average strain-to-failure. Further, at least one of the first and second interfaces exhibits a moderate adhesion such that at least a portion of the crack mitigating layer experiences one or more of a cohesive failure and an adhesive failure at the interfaces when the article is strained to a strain level between the first average strain-to-failure and the second average strain-to-failure. In addition, the refractive index of the crack mitigating layer is between or the same as the refractive indices of the substrate and the film.
Abstract:
One or more aspects of the disclosure pertain to an article including a film disposed on a glass substrate, which may be strengthened, where the interface between the film and the glass substrate is modified, such that the article has an improved average flexural strength, and the film retains key functional properties for its application. Some key functional properties of the film include optical, electrical and/or mechanical properties. In one or more embodiments, interface exhibits the effective adhesion energy is about less than about 4 J/m2. In some embodiments, the interface is modified by the inclusion of a crack mitigating layer between the glass substrate and the film.
Abstract translation:本公开的一个或多个方面涉及一种物品,其包括设置在玻璃基板上的膜,其可以被加强,其中膜和玻璃基板之间的界面被改性,使得制品具有改善的平均弯曲强度,以及 该片保留了其应用的关键功能特性。 膜的一些关键功能特性包括光学,电学和/或机械性质。 在一个或多个实施方案中,界面表现出有效粘合能约为约4J / m 2。 在一些实施方案中,通过在玻璃基底和膜之间包含裂纹缓解层来修饰界面。