Abstract:
Sorbent substrates for CO 2 capture and methods for forming the same are disclosed. In one embodiment, a method for forming a sorbent substrate for CO 2 capture may include forming a plurality of matrix rods from a sorbent material and forming a plurality of channel rods from a support material. The plurality of matrix rods may then be co-extruded with the plurality of channel rods to form a plurality of sorbent filaments comprising a matrix of the sorbent material in which channels of support material are positioned such that the channels extend in an axial direction of each of the plurality of sorbent filaments. The plurality of sorbent filaments may then be stacked to form a filament assembly in which the plurality of sorbent filaments are axially aligned. Thereafter, the plurality of sorbent filaments of the filament assembly may be bonded to one another to form the sorbent substrate.
Abstract:
A composite honeycomb includes a channel-defining honeycomb matrix formed using a first material and a microporous filler made using a second material that is incorporated into a plurality of channels. Mechanical durability provided by the honeycomb matrix and high surface area provided by the microporous filler cooperate to form a gas adsorption platform having both a high gas adsorption capacity and favorable adsorption/desorption kinetics.
Abstract:
A method of preparing a stable slurry of particles of glass precursors for spray drying and subsequent melting, such as by plasma melting, comprising grinding all constituent particles down to less than 50 microns in size, more desirably down to less than 25 or even less than 20 microns in size, removing the water from, or reducing the water content of the particles, mixing the particles with a liquid polymer binder and dispersant at a solids loading in the range of from 20-30%, more particularly in the range of from 22-27%, more desirably 24% by volume.
Abstract:
Push roll spools for engaging and driving softened glass tubes over a shaping mandrel. A push roll spool for use in processing a glass tube may comprise a base having first and second axially spaced ends, and multiple sheets of heat resistant material disposed on the base between the axially spaced ends, forming an axially extending stack. The stack may have a circumferential, generally U-section groove having a profile defined by the peripheral edges of multiple said sheets having different diameters. The U-section groove may be sized to engage and drive a glass tube. The U-section groove may have two contact areas at which to engage and drive a glass tube. The heat resistant material may comprise mica or a mica composition, for example mica paper or ceramic fiber millboard.
Abstract:
The disclosure relates to vessels configured to contain molten semiconducting materials. The vessels include a high purity fused silica lining having a base and sidewalls that define an interior volume, and a fused silica backing proximate the external surfaces of the lining.