Abstract:
Disclosed are various approaches for measuring and reporting the amount of electrical power consumed by an electrical load attached to a guided surface wave receive structure. A guided surface wave receive structure is configured to obtain electrical energy from a guided surface wave traveling along a terrestrial medium. An electrical load is coupled to the guided surface wave receive structure, the electrical load being experienced as a load at an excitation source coupled to a guided surface waveguide probe generating the guided surface wave. An electric power meter coupled to the electrical load and configured to measure the electrical load.
Abstract:
Disclosed are various embodiments of load shedding techniques for a guided surface wave power delivery system. In one embodiment, among others, a guided surface wave receive structure is configured to obtain electrical energy from a guided surface wave traveling along a lossy conducting medium. A user device is coupled to the guided surface wave receive structure as an electrical load, where a load shedding application of the user device is configured to receive load shedding instructions from a controller device coupled to the guided surface waveguide probe and is configured to regulate user device consumption of the electrical energy provided by the guided surface wave.
Abstract:
Disclosed are various embodiments for distributing power to loads and classifying loads that receive electrical energy in the form of guided surface waves that are transmitted by guided surface waveguide probes along a terrestrial medium.
Abstract:
Aspects of detecting the unauthorized consumption of electrical energy are described. In some embodiments, a system includes a guided surface waveguide probe that launches a guided surface wave along a surface of a terrestrial medium. The system further includes metering systems that are distributed within a geographical region associated with the guided surface waveguide probe. The system also includes at least one computing device and memory storing computer instructions that cause the at least one computing device to generate an energy flow map using data obtained from the metering systems.
Abstract:
Disclosed are systems and methods for long distance transmission of offshore generated power. A turbine (403) is located offshore. The turbine (403) can be mechanically coupled to a generator. A guided surface waveguide probe (413) is electrically coupled to the generator and configured to launch a guided surface wave (416) on a terrestrial medium.
Abstract:
The present disclosure sets forth various embodiments of power reception kits and methods. In one embodiment, a guided surface wave receive structure is configured to obtain electrical energy from a guided surface wave travelling along a terrestrial medium. Power output circuitry having a power output is configured to be coupled to an electrical load. The electrical load is experienced as a load at an excitation source coupled to a guided surface waveguide probe generating the guided surface wave. At least one connector is configured to couple the at least one guided surface wave receive structure to the power output circuitry.
Abstract:
The present disclosure is directed to mobile guided surface waveguide probes and receivers. In a representative embodiment, an excitation source such as a generator is coupled to a guided surface waveguide probe. The excitation source and the guided surface waveguide probe mounted to a rigid frame for transport.