Abstract:
Various arrangements of a turbine for a rotating coalescer element of a crankcase ventilation system for an internal combustion engine are described. In some arrangements, the turbine is an impulse turbine, which is also known as a pelton turbine or a turgo turbine. The turbine is used to convert hydraulic power from a stream of pressurized fluid to mechanical power that is used to drive the rotating element. The turbine includes a non-wetting surface (e.g., an oleophobic or hydrophobic surface) that repels the pressurized fluid. The non-wetting surface may be achieved through plasma coating, fluoropolymer coating, micro-topography features, and the like. The non-wetting surface increases the power transmission efficiency from the stream of pressurized fluid to the turbine, thereby increasing the rotational speed of the rotating element compared to wettable surfaced turbines, which in turn increases the efficiency of the rotating element.
Abstract:
A filter assembly comprises a filter head, a port, a fitting, and a diffuser. The port extends from a portion of the filter head and defines a channel for fluid to flow into or out of the filter head. The fitting first end is attachable to the port and the fitting second end is attachable to a filtration system component. The diffuser is positionable within the channel of the port and comprises an inner surface and an outer surface. The inner surface defines an inner conical hollow region that extends at a nonzero angle between the inner conical hollow region first end and the inner conical hollow region second end such that a first inner diameter of the diffuser at the inner conical hollow region first end is smaller than a second inner diameter of the diffuser at the inner conical hollow region second end.
Abstract:
A separation assembly comprises a housing, a jet that expels a fluid within the housing, and a turbine positioned within the housing. The fluid causes the turbine to rotate about a center rotational axis within the housing. The turbine comprises a first axial end, a second axial end, and a plurality of vanes extending axially relative to the center rotational axis from the first axial end to the second axial end. The plurality of vanes defines axially-extending channels between each of the plurality of vanes. The first axial end comprises a radially-extending structure that axially blocks the flow of the fluid through the first axial end. The second axial end does not comprise any structure that axially blocks the flow of the fluid through the second axial end.
Abstract:
Filter housings that have housing wall surface irregularities are described. The surface irregularities are positioned on the inner walls of the housings and/or axial ends of the housing walls. The surface irregularities may be, for example, grooves, ribs, bumps, and the like. The surface irregularities provide an engine integrity protection (EIP) feature by preventing non-approved replacement filter elements from forming seals against alternative sealing surfaces of the housing wall inner surfaces or axial ends.
Abstract:
Rotating coalescer crankcase ventilation (CV) systems are described. The described CV systems utilize a contact seal to seal a gap between a static side of a housing and a rotating coalescer inlet. The rotating coalescer may be driven mechanically, electrically, hydraulically, or the like. The contact seal can be formed via a soft solid or a liquid film created by oil. Accordingly, the contact seal is a hydrodynamic soft seal. The contact seal prevents the blowby gases from bypassing the filter element of the rotating coalescer. At the same time, the contact seal may be broken during positive blowby gas recirculation circumstances because the contact seal is a hydrodynamic soft seal.
Abstract:
A liquid filtration system includes a filter head, a shell housing, and a filter cartridge. The filter head includes a skirt having a ramp disposed at a first end of the skirt. The shell housing is coupled to the filter head. The filter cartridge is disposed within the shell housing. The filter cartridge includes a filter media pack and am endcap coupled to a first end of the filter media pack. The endcap includes an interface member extending from an upper surface of the endcap. The interface member includes a sealing member that is at least partially tilted at an oblique angle relative to a central axis of the endcap. The sealing member is sealingly engaged with the skirt.
Abstract:
A separation assembly comprises a housing, a jet that expels a fluid within the housing, and a turbine positioned within the housing and positioned so as to be contacted by the fluid expelled from the jet. The fluid causes the turbine to rotate about a center rotational axis within the housing. The turbine comprises a first axial end, a second axial end, and a plurality of vanes extending axially relative to the center rotational axis from the first axial end to the second axial end. The plurality of vanes defines axially-extending channels between each of the plurality of vanes. The first axial end is axially open such that fluid can flow unblocked axially through the first axial end and into the channels. The jet is positioned such that at least a portion of the fluid enters into the turbine through the first axial end.
Abstract:
A filter assembly includes a housing having an outer cavity and an inner cavity, and a gasket disposed within the housing. The gasket includes an inner surface, an outer surface, and a vent passage. The gasket forms a first seal with a central tube at the inner surface. The central tube extends into the inner cavity and includes an opening. A filter element is positioned within the housing and includes a filter media configured to filter a fluid and an endcap including an annular tab portion that forms a second seal with the outer surface of the gasket when the filter element is positioned in an operating position within the housing. The vent passage circumvents the first seal and the second seal, allowing air to flow from the inner cavity of the housing to the opening in the central tube.
Abstract:
A filter element for filtering a fluid that comprises a pleated filter media and a support structure. The pleated filter media comprises pleats that define an upstream gap along an upstream surface of the pleated filter media and a downstream gap along a downstream surface of the pleated filter media. The support structure extends along the downstream surface of the pleated filter media and supports the pleats. The support structure is folded into two layers comprising a first layer and a second layer within the downstream gap. The first layer inner surface and the second layer inner surface are positioned adjacent to each other within the downstream gap. The support structure comprises at least one spacer that increases a distance between the first layer outer surface and the second layer outer surface such that the differential pressure drop through portion of the support structure that is within the downstream gap is decreased.
Abstract:
A filter cartridge having a bypass filtration media is described. The filter cartridge includes main filtration media. In some arrangements, the main filtration media includes first filtration media and second filtration media that has a different filtering efficiency than the first filtration media. The filter cartridge is configured to be installed in a filtration system having a bypass mode. While in the bypass mode, fluid passing through the filtration system is allowed to bypass the main filtration media. To avoid unfiltered fluid from passing from the inlet of filtration system to the outlet (e.g., and on to an internal combustion engine), the fluid flows through the bypass filtration media (e.g., during cold start conditions). In some arrangements, the bypass filtration media has a lower filtering efficiency than the main filtration media.