TISSUE AND CELLULAR IMAGING
    2.
    发明申请
    TISSUE AND CELLULAR IMAGING 审中-公开
    组织和细胞成像

    公开(公告)号:WO2013063564A1

    公开(公告)日:2013-05-02

    申请号:PCT/US2012/062409

    申请日:2012-10-29

    Abstract: Systems and methods for imaging ear tissue include: directing illumination radiation to pass through an intact biological structure and be incident on ear tissue that does not include an exogenous fluorophore, at a plurality of locations, the illumination radiation including a plurality of light pulses each having a temporal duration of 500 femtoseconds or less; for each one of the plurality of locations, using a detector to detect radiation emitted from the location that passes through the intact biological structure; and forming an image of the tissue based on the detected radiation at each of the plurality of locations, where the emitted radiation corresponds to endogenous two-photon fluorescence of the tissue.

    Abstract translation: 用于成像耳朵组织的系统和方法包括:引导照射辐射穿过完整的生物结构并且入射到不包括外源荧光团的耳朵组织上,在多个位置处,所述照射辐射包括多个光脉冲,每个光脉冲具有 时间为500飞秒或以下; 对于所述多个位置中的每一个,使用检测器来检测从穿过所述完整生物结构的所述位置发射的辐射; 以及基于在所述多个位置中的每一个处检测到的辐射来形成所述组织的图像,其中所述发射的辐射对应于所述组织的内源双光子荧光。

    ELECTROCHEMICAL REACTOR
    5.
    发明申请

    公开(公告)号:WO2020115712A1

    公开(公告)日:2020-06-11

    申请号:PCT/IB2019/060517

    申请日:2019-12-06

    Abstract: In an electrochemical reactor (R) for producing oxygen and hydrogen by means of electrolysis of an electrolyte (16), wherein the electrochemical reactor (R) comprises a first electrode set (S) and wherein the first electrode set (S) comprises a first electrode (7) and a second electrode (8), the first electrode (7) comprises a multitude of pores, the second electrode (8) comprises a multitude of pores, and the first electrode (7) is arranged inside the second electrode (8), such that an electrolyte channel (15) is formed between the first electrode (7) and the second electrode (8).

    METHODS AND APPARATUS FOR IMAGING WITH MULTIMODE OPTICAL FIBERS
    6.
    发明申请
    METHODS AND APPARATUS FOR IMAGING WITH MULTIMODE OPTICAL FIBERS 审中-公开
    用于多模光纤成像的方法和装置

    公开(公告)号:WO2013144898A2

    公开(公告)日:2013-10-03

    申请号:PCT/IB2013/052493

    申请日:2013-03-28

    Abstract: A multimode waveguide illuminator and imager relies on a wave front shaping system that acts to compensate for modal scrambling and light dispersion by the multimode waveguide. A first step consists of calibrating the multimode wave¬ guide and a second step consists in projecting a specific pattern on the wave¬ guide proximal end in order to produce the desire light pattern at its distal end. The illumination pattern can be scanned or changed dynamically only by chang¬ ing the phase pattern projected at the proximal end of the waveguide. The third and last step consists in collecting the optical information, generated by the sample, through the same waveguide in order to form an image. Known free space microscopy technique can be adapted to endoscopy with multimode waveguide, such as, but not limited to, fluorescence imaging or Raman spectros¬ copy or imaging, 3D linear scattering imaging or two-photon imaging. Super- resolution, i.e., resolution below the diffraction limit, is achieved for example but not limited to, using the STimulated Emission Depletion microscopy (STED) technique or the Structured Illumination Microscopy (SIM) technique or a stochastic illumination based method (PALM, STORM) in combination with the multimode waveguide imaging method.

    Abstract translation: 多模波导照明器和成像器依赖于波前整形系统,其用于补偿多模波导的模式加扰和光色散。 第一步包括校准多模波导,第二步包括将特定图案投影在波导近端上,以在其远端产生期望的光图案。 可以通过改变在波导的近端处投影的相位图案来动态扫描或改变照明图案。 第三和最后一步是通过相同的波导收集由样品产生的光学信息,以形成图像。 已知的自由空间显微技术可以适用于多模波导的内窥镜检查,例如但不限于荧光成像或拉曼光谱复制或成像,3D线性散射成像或双光子成像。 超分辨率,即低于衍射极限的分辨率,例如但不限于使用受激发射耗尽显微镜(STED)技术或结构照明显微镜(SIM)技术或基于随机照明的方法(PALM,STORM )结合多模波导成像方法。

    IMAGING BASED INTERFEROMETRIC PRESSURE SENSOR
    7.
    发明申请
    IMAGING BASED INTERFEROMETRIC PRESSURE SENSOR 审中-公开
    基于成像的干涉压力传感器

    公开(公告)号:WO2011051903A1

    公开(公告)日:2011-05-05

    申请号:PCT/IB2010/054890

    申请日:2010-10-28

    CPC classification number: A61B5/02154

    Abstract: An imaging based interferometric pressure sensor apparatus compromise a fluid pressure sensor unit (1) and an optical monitor (2). The disposable pressure sensor part comprises a rigid transparent cover plate 3 and a flexible diaphragm (4), in between forming an air-gap cavity (8). By illuminating the air-gap cavity (8) with a light source (6), the air-gap cavity generates an interference pattern which is captured by the optical imaging device (7). The pressure of the fluid (5) to be sensing is applied to flexible diaphragm, causing the deformation of the diaphragm and the variation of the air-gap thickness. Hence the interference pattern varies with pressure of fluid. The optical monitor (2) includes light source 6 and optical image device (7) which records the interference pattern from the fluid pressure sensor unit (1). The pressure of the fluid is measured by processing the captured image.

    Abstract translation: 基于成像的干涉式压力传感器装置损害流体压力传感器单元(1)和光学监视器(2)。 一次性压力传感器部分包括刚性透明盖板3和柔性隔膜(4),其间形成气隙腔(8)。 通过用光源(6)照射气隙腔(8),空气隙产生由光学成像装置(7)捕获的干涉图案。 要感测的流体(5)的压力被施加到柔性隔膜上,导致膜片的变形和气隙厚度的变化。 因此,干涉图案随流体的压力而变化。 光学监视器(2)包括记录来自流体压力传感器单元(1)的干涉图案的光源6和光学图像装置(7)。 通过处理捕获的图像来测量流体的压力。

    OPTICAL COMPUTING AND RECONFIGURING WITH SPATIOTEMPORAL NONLINEARITIES IN WAVEGUIDES

    公开(公告)号:WO2022136146A1

    公开(公告)日:2022-06-30

    申请号:PCT/EP2021/086406

    申请日:2021-12-17

    Abstract: A device for optical computing comprises at least one modulator (210, 710, 810, 910, 1010, 1110, 1210, 1310, 1410, 1520, 1610, 1710, 1810, 1910, 2010, 2110, 2210) and at least one waveguide (220, 720, 820, 920, 1020, 1120, 1220, 1320, 1420, 1530, 1620, 1720, 1820, 1920, 2020, 2120, 2220). The at least one modulator (210, 710, 810, 910, 1010, 1110, 1210, 1310, 1410, 1520, 1610, 1710, 1810, 1910, 2010, 2110, 2210) is configured to modulate incident radiation, whereby input radiation is generated. The at least one waveguide (220, 720, 820, 920, 1020, 1120, 1220, 1320, 1420, 1530, 1620, 1720, 1820, 1920, 2020, 2120, 2220) is configured to guide the input radiation along a propagation direction. The at least one waveguide (220, 720, 820, 920, 1020, 1120, 1220, 1320, 1420, 1530, 1620, 1720, 1820, 1920, 2020, 2120, 2220) is configured to nonlinearly optically transform the input radiation propagating in the at least one waveguide, whereby output radiation that is outputted from the waveguide (220, 720, 820, 920, 1020, 1120, 1220, 1320, 1420, 1530, 1620, 1720, 1820, 1920, 2020, 2120, 2220) is optically computed.

Patent Agency Ranking