Abstract:
Accurately dispensing small amounts of high viscosity lubricant components uses tubeless positive-displacement liquid-handling equipment for forming lubricant blends. Steps include: providing a low void volume positive displacement pipette with a tapered tip for each lubricant component contained within a lubricant additive reservoir, and a lubricant blend container; ingesting into the pipette from a lubricant additive reservoir, an ingestion volume of a lubricant component; moving the pipette from the lubricant additive reservoir to the lubricant blend container; ejecting Into the lubricant blend container an ejection volume of the lubricant component from the pipette; returning the pipette from the lubricant blend container to the additive reservoir; and repeating these steps for each additional lubricant component. The method finds application in high throughput laboratory testing environments.
Abstract:
A lubricating oil including a lubricating oil base stock as a major component; and a mixture of (i) one or more protected lubricating oil additives having a first performance function, and (ii) one or more unprotected lubricating oil additives having a second performance function, as a minor component. The first performance function and the second performance function are the same. The one or more protected lubricating oil additives are inactive with respect to their performance function. The one or more protected lubricating oil additives are converted into one or more unprotected lubricating oil additives in die lubricating oil in-service in an engine or other mechanical component. A method for controlled release of one or more lubricating oil additives into a lubricating oil. A method for improving oxidative stability of a lubricating oil and extending performance life of one or more lubricating oil additives.
Abstract:
This disclosure relates to lubricating engines using formulated lubricating oils to reduce wear and improve engine fuel efficiency. The formulated lubricating oils contain a major amount of a nonpolar lubricating oil base stock and a minor amount of one or more polar lubricating oil additives. The one or more polar lubricating oil additives include swollen inverse micelles dispersed in the nonpolar lubricating oil base stock. The swollen inverse micelles include (i) a liquid polar core containing a polar solvent and one or more polar lubricating oil additives having solubility in the polar solvent, and (ii) a layer of liquid surfactant molecules enclosing the liquid polar core in which polar heads of the liquid surfactant molecules are oriented towards the liquid polar core. A method of improving solubility of polar lubricating oil additives in a nonpolar lubricating oil base stock is also provided.
Abstract:
A method to blend components to form a lubricant having a predetermined characteristic comprising determining the characteristic from a model that relates that characteristic as a function of the amount of its components and properties of the components.
Abstract translation:混合组分以形成具有预定特征的润滑剂的方法包括从将该特征作为其组分的量和性质的函数关联的模型确定特征。 p >
Abstract:
A lubricating oil including a lubricating oil base stock as a major component, and one or more lubricating oil additives having at least one protected active group, as a minor component. The one or more lubricating oil additives having at least one protected active group are converted into one or more lubricating oil additives having at least one unprotected active group in the lubricating oil in-service in an engine or other mechanical component. Compositions including one or more lubricating oil additives having at least one protected active group. A method for improving solubility of one or more lubricating oil additives in a lubricating oil. A method for improving oxidative stability of a lubricating oil and extending performance life of one or more lubricating oil additives. A method for improving friction control in an engine or other mechanical component lubricated with a lubricating oil.
Abstract:
A petroleum desalting process in which fluid from interracial boundary layer between the settled water layer and the settled oil layer or emulsion-water layer in the vessel is withdrawn from the desalter and recycled to the crude oil inlet of the desalter to improve separation of the oil and water phases.
Abstract:
Provided is a lubricating oil including a nonpolar lubricating oil base stock as a major component and microcapsules as a minor component. The microcapsules includes (i) a core containing a polar solvent and one or more polar lubricating oil additives having solubility in the polar solvent, and (ii) optionally a shell or membrane enclosing the core. The solubility of the polar lubricating oil additives in the nonpolar lubricating oil base stock is improved as compared to solubility achieved using a lubricating oil containing polar lubricating oil additives in a nonpolar lubricating oil base stock and not containing the microcapsules. A method of improving solubility of polar lubricating oil additives in a nonpolar lubricating oil base stock is also provided. The lubricating engine oils of this disclosure can be useful in automotive, marine, aviation, and industrial engine and machine components.