Abstract:
Images of an undercarriage of a vehicle may be captured via one or more cameras. A point cloud may be determined based on the images. The point cloud may includes points positioned in a virtual three-dimensional space. A stitched image may be determined based on the point cloud by projecting the point cloud onto a virtual camera view. The stitched image may be stored on a storage device.
Abstract:
Provided are mechanisms and processes for augmenting multi-view image data with synthetic objects using inertial measurement unit (TMU) and image data. In one example, a process includes receiving a selection of an anchor location in a reference image for a synthetic object to be placed within a multi-view image. Movements between the reference image and a target image are computed using visual tracking information associated with the multi-view image, device orientation corresponding to the multi-view image, and an estimate of the camera's intrinsic parameters. A first synthetic image is then generated by placing the synthetic object at the anchor location using visual tracking information in the multi-view image, orienting the synthetic object using the inverse of the movements computed between the reference image and the target image, and projecting the synthetic object along a ray into a target view associated with the target image. The first synthetic image is overlaid on the target image to generate an augmented image from the target view.
Abstract:
Systems and methods for artificially rendering images using viewpoint interpolation and/or extrapolation estimate a transformation between first and second frames, where the first frame includes a first image captured from a first location and the second frame includes a second image captured from a second location. A rendered image corresponding to a third location positioned on a trajectory between the first and second locations is generated by interpolating a transformation from the first location to the third location and from the third location to the second location and gathering image information from the first frame and the second frame by transferring first image information from the first frame to the third frame based on the interpolated transformation and second image information from the second frame to the third frame based on the interpolated transformation. The first and second image information are then combined, and any occlusion is filled..