Abstract:
Methods and compositions are disclosed that comprise cement kiln dust having a mean particle size that has been altered. An embodiment discloses a subterranean treatment method comprising: introducing a treatment fluid into a subterranean formation, wherein the treatment fluid comprises cement kiln dust having a mean particle size that has been altered from its original size by grinding, separating, or a combination thereof. Another embodiment discloses a subterranean treatment method comprising: introducing a treatment fluid into a subterranean formation, wherein the treatment fluid comprises cement kiln dust having a mean particle size that has been reduced from its original size.
Abstract:
The present invention relates to the delivery of a plurality of chemical components in well bore applications. More particularly, this invention relates to delivery capsules and methods of using such delivery capsules for facilitating the delivery of at least a plurality of chemical components to subterranean well bores. In one embodiment, a method of supplying chemical components to a subterranean formation comprises placing a delivery capsule having at least a first chamber comprising a first chemical component and at least a second chamber comprising a second chemical component into the subterranean formation, and allowing the first and second components to be released from the delivery capsule. In other embodiments, the present invention provides a delivery capsule for facilitating the delivery of a plurality of chemical components to a well bore penetrating a subterranean formation comprising a first chamber containing a first chemical component and at least a second chamber containing a second chemical component.
Abstract:
A method comprising mixing a wellbore servicing composition comprising Micro-Electro-Mechanical System (MEMS) sensors in surface wellbore operating equipment at the surface of a wellsite. An interrogator retrieves data regarding a parameter sensed by the MEMS sensor.
Abstract:
A method comprising placing a composition comprising a wellbore servicing fluid and a Micro-Electro-Mechanical System (MEMS) sensor in a subterranean formation, whereby the MEMS sensor is coated with an elastomer. The elastomer-coated MEMS sensor is used to detect one or more parameters, including a compression or swelling of the elastomer, an expansion of the elastomer, or a change in density of the composition.