Abstract:
Methods and systems of electromagnetic sensing in a wellbore are presented in this disclosure for monitoring annulus fluids and water floods. An array of transmitters and one or more receivers are located along a casing in the wellbore. A transmitter in the array and one of the receivers can be mounted on a same collar on the casing forming a transmitter- receiver pair. The receiver can receive a signal originating from the transmitter and at least one other signal originating from at least one other transmitter in the array, wherein the signal is indicative of a fluid in the wellbore in a vicinity of the transmitter-receiver pair and the at least one other signal is indicative of another fluid in a formation around the wellbore. The receiver can further communicate, via a waveguide, the signal and the at least one other signal to a processor for signal interpretation.
Abstract:
Metamaterials are used in well logging measurement tools to position-shift and size-scale antennas such that they can be placed very close to the outer perimeter of the tool, which can improve azimuthal sensitivity and vertical resolution. Antennas of an azimuthal pipe inspection or induction-based borehole imaging tool can be placed with minimal stand-off against a borehole wall. Use of such metamaterials can improve the resolution of logs or images that are obtained by such tools. The metamaterials also can be used to effectively centralize radial coils. Disclosed implementations of metamaterials can be used with gradient ranging tools to effectively increase the spacing between ranging antennas. Increased spacing can maximize the signal levels with respect to noise, without producing distortions that are observed with the inclusion of magnetic materials.
Abstract:
Aspects of the subject technology relate to systems and methods for identifying a mud angle associated with an electromagnetic imager tool based on tool measurements made during operation of the electromagnetic imager tool. Tool measurements made by an electromagnetic imager tool operating to log a wellbore in a formation can be gathered. The tool measurements can be decomposed into two quantities along a plurality of candidate mud angles for the electromagnetic imager tool. As follows, a mud angle associated with the electromagnetic imager tool can be identified from the plurality of candidate mud angles based on an amount of correlation between the two quantities for each of the plurality of candidate mud angles.
Abstract:
Apparatus, systems, and methods may operate to detect rugosity in a borehole. Additional activity may include generating a rugosity correction, responsive to detecting rugosity in the borehole, by finding an effective borehole diameter, consistent with the presence of rugosity, for which a simulation of a model of the borehole using the effective borehole diameter generates simulation resistivity measurements that match, within a tolerance, resistivity measurements before execution of a borehole correction algorithm. Additional activity may include applying rugosity correction by generating resistivity logs, using the effective borehole diameter, that are corrected for rugosity and borehole effect. Additional apparatus, systems, and methods are disclosed.
Abstract:
The disclosure concerns a device for obtaining electromagnetic measurements in a wellbore. In one implementation, the device includes an electromagnetic source carried by the device and a metamaterial arranged to cover a portion of the device in order to divert electromagnetic waves from the source around the covered portion of the device. In one version, the electromagnetic radiation from the source impinging on the portion of the device covered by the metamaterial, and on the electronics carried by the devices that are covered by the metamaterial is reduced. Depending on the implementation, the electromagnetic source may be an antenna, such as a coil antenna. Also, the antenna coil may be wrapped circumferentially around the tool.
Abstract:
A system may include an electromagnetic (EM) logging tool. The EM logging tool may include a mandrel, at least one low-frequency transmitter coil disposed on the mandrel, at least one-low frequency receiver coil disposed on the mandrel, and at least one-high frequency sensor configured to measure one or more electromagnetic properties of a tubular.
Abstract:
Aspects of the subject technology relate to systems and methods for identifying values of mud and formation parameters based on measurements gathered by an electromagnetic imager tool through machine learning. One or more regression functions that model mud and formation parameters capable of being identified through an electromagnetic imager tool as a function of possible tool measurements of the electromagnetic imager tool can be generated using a known dataset associated with the electromagnetic imager tool. One or more tool measurements obtained by the electromagnetic imager tool operating to log a wellbore can be gathered. As follows, one or more values of the mud and formation parameters can be identified by applying the one or more regression functions to the one or more tool measurements.
Abstract:
Eddy current logging enables corrosion monitoring in nested-pipe arrangements. An illustrative method of logging total thickness of the pipe walls includes acquiring measurements from an electromagnetic logging tool conveyed through the innermost bore, each measurement associated with a TRF combination (transmit antenna, receive antenna, and frequency), and further associated with a position along the bore. Multiple scale factors are applied to the measurements to determine multiple total thickness estimates for each poisition, each of the multiple scale factors corresponding to a subset of single-pipe defect profiles. Preferably, every possible single-pipe defect profile is included in at least one of these subsets. A total thickness log value for each position is derived from the multiple total thickness estimates for that position, and the derived total thickness log values are used to update a displayed total thickness log as the measurements are being acquired.
Abstract:
A corrosion detection system for a pipe may include a corrosion detection tool. The corrosion detection tool may include a transmitter and a receiver. The transmitter and receiver have measurements associated with each and these measurements may be used to determine an impedance. Derived constants match a numerical model that is based on the measurements associated with the transmitter and the nominal thickness of the pipe. The information related to the thickness of a pipe surrounding the corrosion detection is based on the derived constants and the impedance. This thickness of the pipe may be used to determine if a section of a pipe has a defect, such as, corrosion.
Abstract:
The operational position of a moveable device is detected using a magnetic-type logging tool. The logging tool generates a baseline log of the moveable device in a non-actuated position, and a response log of the moveable device in an actuated position. The baseline and response logs are then compared in order to determine the operational position of the moveable device.