Abstract:
At least one crack designator for a perforating gun, wherein the gun includes a longitudinal direction, a lateral direction, and at least one scallop, wherein each crack designator is capable of redirecting crack growth from the lateral direction to the longitudinal direction of the gun. The designator may be located in one of the scallops, extend from an expected exit hole in the gun to an edge of one of the scallops, and be capable of redirecting crack growth from a lateral direction to a longitudinal direction of the gun. In preferred embodiments, the designator in each scallop is arranged in a spider pattern or concentric circles. The designator is preferably formed by machining, etching, or laser ablation. The designator may have a lower fracture toughness or lesser stiffness than surrounding material of the gun.
Abstract:
A sensing subassembly for use with a downhole tool comprises a housing, a cavity disposed within the housing, an electronic board disposed within the cavity, a stiffening member engaging the electronic board and configured to limit flexing of the electronic board, and a spring member configured to provide an isolation mount for the electronic board within the cavity.
Abstract:
A sensing subassembly for use with a downhole tool comprises a housing, a cavity disposed within the housing, at least one electronic component disposed within the cavity, and at least one isolating member disposed within the cavity. The at least one isolating member is configured to attenuate at least a portion of frequency components of a mechanical wave above a threshold and transmit at least a portion of frequency components below the threshold to the at least one electronic device.
Abstract:
A system, method, and circuit for determining signals. A bridge output is received from a Wheatstone bridge sensing a slow signal and a fast signal. A slow output associated with the slow signal and a fast output associated with the fast signal are determined from the bridge output utilizing a microcontroller. The microcontroller generates the offset signal in response to the slow output. Other systems, methods, and circuits are disclosed.
Abstract:
In an embodiment, a sensing subassembly for use with a downhole tool comprises a housing, a cavity extending into the housing, a sensor disposed at least partially within the cavity, a shock mitigating member disposed between at least one end of the sensor and the housing, and at least one seal member disposed between the sensor and the housing. At least a portion of the sensor is in fluid communication with an exterior of the housing, and the shock mitigating member is configured to attenuate at least a portion of a shock wave between the housing and the sensor.
Abstract:
A perforation tool assembly comprises a perforation gun, and a mass energy absorber coupled to the perforation gun. The mass energy absorber is configured to alter the propagation of mechanical energy released by firing one or more perforation guns. The mass energy absorber comprises a mass and at least one absorber, and the at least one absorber is disposed between the mass and the perforating gun.
Abstract:
The disclosed embodiments include a system and method in which a plurality of shock sensing subassemblies are arranged within the tool string to monitor the transient response of formation characteristics to various stimuli, including changes in pressure and temperature of a region of a wellbore that is nearby the formation. The systems and methods involve gathering measurements that reflect the transient response and comparing the measured data to predicted data. The results of the comparison can be used to determine formation properties and to refine and improve modeling processes used to generate the predicted data.
Abstract:
Certain aspects are directed to capturing data regarding physical states associated with a perforating string. In one aspect, a sensing tool is provided. The sensing tool includes at least one sensor and a processor positioned in an isolated chamber of the sensing tool. The processor samples data from the sensor at a first sampling rate associated with the deployment of a perforating string. The data is associated with at least one parameter with respect to the perforating string. The processor detects a trigger condition associated with a perforation operation of the perforating string. The processor switches to a second sampling rate in response to detecting the trigger condition. The second sampling rate is greater than the first sampling rate and is associated with the perforation operation. The processor samples data at the second sampling rate for a period of time in which the perforation operation is at least partially performed.
Abstract:
A perforation tool assembly. The perforation tool assembly comprises a tool string connector, a perforation gun coupled to the tool string connector, and a structure configured to absorb mechanical energy released by firing one or more perforation guns. The coupling is configured to provide a limited range of motion of the tool string connector relative to the perforation gun. The tool string connector and the perforation gun retain the structure configured to absorb mechanical energy.
Abstract:
A perforation tool assembly is provided. The perforation tool assembly comprises an energy train, a first perforation gun, and a second perforation gun. The energy train comprises a moderator to reduce the speed of propagation of a detonation in a direction parallel to the axis of the perforation tool assembly. The first perforation gun comprises a plurality of explosive charges coupled to a first portion of the energy train. The second perforation gun comprises a plurality of explosive charges coupled to a second portion of the energy train, wherein the second portion of the energy train is coupled to the first portion of the energy train.