Abstract:
A method, system, and computer-readable medium are provided for calibrating elements of a MIMO array. The method includes the steps of receiving samples of a signal from a plurality of antenna units included in the MIMO array, generating an antenna domain channel estimate based on the samples of the signal received from each antenna unit, estimating a set of spatial parameters based on the antenna domain channel estimate, generating a reconstructed channel based on the estimated set of spatial parameters, comparing the antenna domain channel estimate and the reconstructed channel to determine errors associated with a set of mismatch parameters for each antenna unit, and adjusting the set of mismatch parameters based on the errors. Each antenna unit in the plurality of antenna units is configured to sample the signal based on a clock corresponding with the antenna unit.
Abstract:
A method for channel estimation includes determining position information of a main transmission point with a primary transmission path to the communications device and of at least one mirror transmission point associated with the main transmission point by at least one secondary transmission path between the main transmission point and the communications device, estimating a primary channel between the main transmission point and the communications device and at least one secondary channel between the at least one mirror transmission point and the communications device in accordance with the position information of the main transmission point and of the at least one mirror transmission point and position information of antennas in an antenna array of the communications device, and instructing use of the estimated primary channel and the at least one estimated secondary channel.
Abstract:
A method for operating a large scale multiple input multiple output (MIMO) communications device adapted to perform large scale MIMO communications includes determining beamforming coefficients for antennas of an antenna array in accordance with position information of antennas of the antenna array and directional information of a communications device with which the large scale MIMO communications device is communicating, applying the beamforming coefficients to the antennas of the antenna array, and communicating with the communications device using the antenna array.
Abstract:
An apparatus, system, and method are provided for affording digital to analog converter (DAC) quantization noise that is independent of an input signal. In operation, an input signal for a DAC is received. Further, a particular signal is added to the input signal for the DAC, such that an output signal of the DAC includes quantization noise that is independent of the input signal (e.g. includes white noise, etc. ), as a result of the particular signal being added to the input signal for the DAC.
Abstract:
A method includes determining position information of a main transmission sink having a primary transmission path to a communications device and of at least one mirror transmission sink associated with the main transmission sink by at least one secondary transmission path between the main transmission sink and the communications device, estimating primary channels between the communications device and antennas of an antenna array of the main transmission sink and secondary channels between the communications device and antennas of an antenna array of the at least one mirror transmission sink, the estimating is at least partially based on the position information of the main transmission sink and the at least one mirror transmission sink and position information of the antennas in the antenna arrays, and instructing use of the estimated primary channels and the estimated secondary channels.
Abstract:
A method for associating signal sources and paths includes determining secondary paths of a signal received at a reception point, wherein the signal reflects off one or more reflective surfaces before being received at the reception point, determining mirror sources of the secondary paths in accordance with locations of the one or more reflective surfaces and a main source of the signal, determining associations between the secondary paths and the mirror sources based on cross points at which the signal reflected off the one or more reflective surfaces, thereby obtaining path-source associations, and instructing use of the path-source associations in multi-source channel estimation.
Abstract:
A large scale multiple input multiple output (MIMO) communications device includes a first plurality of antenna units (AUs) arranged in an array, and a central processing unit operatively coupled to a first end AU in the first plurality of AUs. Each AU in the first plurality of AUs is operatively coupled to at least two neighboring AUs, and wherein each AU receives wireless signals, receives neighbor information from at least a first neighboring AU, generates local information associated with the AU in accordance with the received wireless signals and the neighbor information, and sends the local information associated with the AU to a second neighboring AU. The central processing unit receives local information associated with the first end AU, and generates estimates of the received transmissions in accordance with the local information associated with the first end AU.