Abstract:
A method comprising transmitting a delay value to each of a plurality of digital subscriber line (DSL) transceivers, by a distribution point unit (DPU), and receiving a plurality of signals at substantially the same time, wherein each of the plurality of signals is from a different DSL transceiver in the plurality of DSL transceivers and transmitted at different times based on the delay value and a corresponding propagation delay.
Abstract:
An apparatus comprising a first transceiver unit (TU) for coupling to a first subscriber line, at least one next TU for coupling to at least one next subscriber line, and a processor coupled to the first TU and the at least one next TU, wherein the processor is configured to determine a link state in which data transmission is disabled for the duration of one or more symbols in a superframe, instruct the first TU to operate in the determined link state, and coordinate data transmission by the first TU and the at least one next TU to avoid an increase of crosstalk from the first line to the at least one next subscriber line due to the first TU operating in the determined link state.
Abstract:
An apparatus comprising a first transceiver unit (TU) for coupling to a first subscriber line, at least one next TU for coupling to at least one next subscriber line, and a processor coupled to the first TU and the at least one next TU, wherein the processor is configured to determine a link state in which data transmission is disabled for the duration of one or more symbols in a superframe, instruct the first TU to operate in the determined link state, and coordinate data transmission by the first TU and the at least one next TU to avoid an increase of crosstalk from the first line to the at least one next subscriber line due to the first TU operating in the determined link state.
Abstract:
A transmitter in a Digital Subscriber Line (DSL) system includes a rate encoder configured to generate a first set of encoded bits using a set of least significant bits, a trellis shaper configured to generate a second set of encoded bits using a most significant bit and the first set of encoded bits, a first constellation mapper configured to generate a first point described by integer coordinates in a complex plane based on the first set of encoded bits obtained from the rate encoder, a second constellation mapper configured to generate a second point described by integer coordinates in the complex plane after interleaving two bits from the second set of encoded bits obtained from the trellis shaper, and a merger module configured to merge the first point with the second point to generate a symbol. The symbol represents a third point described by integer coordinates in the complex plane.
Abstract:
A method comprising modulating a plurality of synchronized signals by an orthogonal probe sequence (OPS) to generate a plurality of modulated synchronized signals, wherein the OPS comprises a zero element (0-element) column that indicates a start or an end of the OPS, and concurrently transmitting,using one or more transmitters, the plurality of modulated synchronized signals over a duration of a number of discrete multi-tone (DMT )symbols,wherein each of the plurality of modulated synchronized signals is intended for one of a plurality of receivers that are remotely coupled to the one or more transmitters via a vectored group of subscriber lines, and wherein the 0-element column causes all of the plurality of modulated synchronized signals to have a zero-amplitude during a first or a last of the DMT symbols.
Abstract:
An apparatus comprising a customer node configured to couple to an access node and to receive via a channel from the access node a time of day (TOD) value and a corresponding sample index (SNUM) value, wherein the TOD value and the SNUM value are used to estimate a second time of day (TOD') value based on a propagation delay of the channel (L-Delay), and wherein the TOD value and the TOD' value are used to estimate a second SNUM value (SNUM') based on L-Delay and a plurality of parameters.
Abstract:
A network component comprising at least one processor configured to implement a method comprising creating a bivariate histogram using impulse noise data comprising a plurality of variables, wherein the bivariate histogram describes the joint statistics between at least two of the variables. Also disclosed is an apparatus comprising an impulse noise monitor (INM) in communication with an impulse noise sensor (INS), wherein the INM is configured to receive error data from the INS and create a bivariate histogram comprising a plurality of variables using the error data. Included is a method comprising providing a bivariate histogram comprising an impulse noise length (IL) and an impulse noise inter-arrival time (IAT) for a plurality of impulse noise events, wherein the IL and the IAT are each measured in integer multiples of discrete multi-tone symbols, and wherein the bivariate histogram is used to determine a minimum impulse noise protection.
Abstract:
A system for realizing emergency rate reduction (SOS). A receiver initiates a short rate- reduction request, and communicates that request to a transmitter. The transmitter initiates an operational switch to an adjusted transmission reference (i.e., a new bit/gain table), by sending a signal to synchronize the operational switch for both the transmitter and the receiver. The adjusted transmission reference may be calculated using a formula, from a current bit/gain table, or may be a predefined bit/gain table. The parameters of the formula may be predefined, calculated during initialization, or determined in real time during SOS.