Abstract:
A marine power pedestal is disclosed. The power pedestal is configured to connect to a mobile device comprising a main body, one or more electrical power units disposed in the main body and configured to conduct power to a marine vessel, one or more display screens, one or more sensors. A controller including a network interface is configured to communicate with a mobile device via a communication network, transmit data to a server via the communication network, and execute commands received, via the communication network, from the server or the mobile device.
Abstract:
An electrical outlet assembly includes a sub-faceplate having a front surface and first set of contacts position on the front surface. An outer faceplate includes an outer surface and an inner surface, the inner surface having a second set of contacts. The outer faceplate is releasably connected to the sub- faceplate so that the first set of contacts connect to the second set of contacts.
Abstract:
Arc fault protection for a digital electricity distribution system that provides power to a device. The system includes an arc fault circuit interrupter ("AFCI") and a controller. The controller is connected to the AFCI. The controller is operable to control the AFCI to disable power to the device. The controller includes a processor and a memory. The controller is configured to transmit a digital electricity energy packet through the AFCI to the device, measure an amount of error associated with the digital electricity energy packet, evaluate the amount of error associated with the digital electricity energy packet, determine whether an arc fault condition is present based on the evaluation of the amount of error associated with the digital electricity energy packet, and control the AFCI to disable power to the device when the arc fault condition is determined to be present.
Abstract:
A device charging system including a battery module and a central charging station. The battery module is configured to supply a type of power to at least one load device. The central charging station is in communication with the battery module. The central charging station includes an electronic processor configured to define a virtual boundary, determine a location of the battery module, determine, based the location of the battery module, whether the battery module is within the virtual boundary, and transmit a command to the battery module causing the battery module to stop supplying power to the load device when the battery module is not within the virtual boundary.
Abstract:
Test system and method comprise a controller, which can be microprocessor derived and include operating system for programmability, to control low voltage signals and feedback for managing the test system. High potential test system can include an amplifier comprising solid-state and/or passive components amplifying lower voltage signal to produce higher voltage output signal based on signal monitoring and control provided by controller. Controlled higher voltage output signal can be injected into high voltage multiplier circuit resulting in high DC voltage output voltage up to 50 kV or higher range. The monitoring can include feedback indicative of higher voltage signal output of amplifier and/or high DC voltage output voltage of high voltage multiplier circuit. System feedback and control can be fully automated, or selectively user-controlled via a user interface providing continuous and/or selective monitoring and display of system parameters and measured signal inputs and/or outputs.
Abstract:
A wall outlet inductive charger includes a base having a receptacle portion and an inductive charging portion. A faceplate is connected to the base. A device support extends from the faceplate. A charger assembly is connected to the base and positioned between the base and the faceplate. The charger assembly includes an inductive coil.
Abstract:
A portable device charging unit includes a battery, a base supporting the battery and including an inductive charging surface, and at least one retainer for selectively securing an electronic device in engagement against the inductive charging surface. In addition, a system may be provided for storing and dispensing one or more device charging units.
Abstract:
One embodiment provides a non-contact power transmitter device including a sealed housing provided at least partially within a surface, and a transmitter coil within the sealed housing configured to inductively transfer power to a power receiver device. The power transmitter device also includes a transmitter control unit coupled to the transmitter coil, a transceiver configured to communicate with the power receiver device, and an electronic processor coupled to the transmitter control unit and the transceiver. The electronic processor is configured to establish, using the transceiver, communication with the power receiver device, and negotiate power transfer requirements between the power transmitter device and the power receiver device. The electronic processor is also configured to control the transmitter coil unit to transfer power to the power receiver device.
Abstract:
A device charging system application to track one or more batteries configured to supply power to at least one load device and a central charging station in communication with the battery and including a transceiver and an electronic processor configured to define a virtual boundary within an area proximate to the central charging station, determine a proximate location of the battery, determine, based the location of the battery, whether the battery is within the virtual boundary, and transmit a command to the battery causing the battery to stop supplying power to the load device when the battery is not within the virtual boundary.
Abstract:
A charging system includes a first charging portion and a second charging portion. The first charging portion includes at least one first connector and at least one first interface for charging a connected device. The first charging portion is configured to receive electrical current from a power source. The second charging portion includes at least one second connector and at least one second interface for charging a connected device. The at least one first connector is removably coupled to the at least one second connector, thereby removably coupling the second charging portion to the first charging portion to facilitate transmission of electrical current between the first charging portion and the second charging portion.