Abstract:
A method for controlling a bandwidth used for processing a baseband transmit signal by a transmit path of a transmitter is provided. The method includes generating a first comparison result by comparing, to a threshold value, a first number of physical resource blocks allocated to the transmitter for a first transmission time interval. Further, the method includes generating a second comparison result by comparing, to the threshold value, a second number of physical resource blocks allocated to the transmitter for a subsequent second transmission time interval. The method additionally includes adjusting the bandwidth based on the first and the second comparison results.
Abstract:
A method for controlling a bandwidth used for processing a baseband transmit signal by a transmit path of a transmitter is provided. The method includes generating a first comparison result by comparing, to a threshold value, a first number of physical resource blocks allocated to the transmitter for a first transmission time interval. Further, the method includes generating a second comparison result by comparing, to the threshold value, a second number of physical resource blocks allocated to the transmitter for a subsequent second transmission time interval. The method additionally includes adjusting the bandwidth based on the first and the second comparison results.
Abstract:
A hybrid polar I-Q transmitter comprises an I-Q quantization circuit configured to receive an in-phase signal and a quadrature signal forming a first I-Q data pair, and generate a quantized in-phase signal and a quantized quadrature signal forming a second I-Q data pair, respectively, based on a resolution information of a digital-to-analog converter (DAC). Each of the first and second I-Q data pairs corresponds to a point in an I-Q constellation diagram comprising an I axis and a Q axis that are orthogonal to one another. The transmitter further comprises a quantization reduction circuit configured to determine a first rotation angle and a second rotation angle of the I-axis and Q-axis, respectively, based on the first I-Q data pair and the second I-Q data pair, and use the determined first rotation angle and the second rotation angle for generating an RF output signal.
Abstract:
Techniques for generating signals based on two constant amplitude phasors are discussed. One example apparatus includes phase calculation circuitry that generates first and second angles from a representation of a complex signal; distributor circuitry that receives the second angle and outputs a positive and a negative version of it; a first signal generator configured that receives the first angle and one of the positive or the negative version and generates a first signal based on the first angle and the one of the positive or the negative version; a second signal generator that receives the first angle and the other of the positive or the negative version and generates a second signal based on the first angle and the other of the positive or the negative version; and a combiner that combines the first and the second signal and generates an output signal equivalent to the complex signal.