Abstract:
A resource block (RB)-based multicarrier modulation (MCM) transmitter and receiver structure for spectral agile systems are disclosed. The transmitter and the receiver are capable of sharing opportunistically available and non-contiguous channels with other users. The RB-MCM partitions the available spectrum, contiguous or non-contiguous, into multiple RBs (same or different sizes), applies a baseband MCM or single carrier modulation, or coded single carrier or multicarrier schemes in each RB with a type of spectral leakage reduction technique, and applies RB modulation for each RB to modulate the signal from baseband to the frequency band of that RB. At the receiver, the received signal may be filtered and RB demodulation may be applied to put each RB signal in baseband and a baseband multicarrier or single carrier or coded single carrier or coded multicarrier demodulation may be applied to each RB signal. Different RBs may use different modulation schemes.
Abstract:
Systems, methods, and instrumentalities are disclosed to utilize a combined precoding technique in a multicarrier modulation system to reduce out-of-band power leakage. A combined precoder may be used to precede a symbol stream using a matrix-based precoding component to generate a first precoded symbol stream. The combined precoder may then be used to apply a perturbation to the first precoded symbol stream to generate a second precoded symbol stream.
Abstract:
A method and apparatus for performing pulse shaping using different windowing functions for different sub-bands of a transmission is disclosed. A method for use in a wireless transmit/receive unit (WTRU) may include the WTRU receiving data symbols. The WTRU may assign the data symbols to a plurality of subcarriers in different sub-bands and map the data symbols on each of the plurality of subcarriers in the different sub-bands to a plurality of corresponding subcarriers of an inverse fast Fourier transform (IFFT) block. The WTRU may take an IFFT of the block for each sub-band and pad an output of the IFFT block with a prefix and a postfix for each sub-band. The WTRU may apply a windowing function to an output of the padding for each sub-band and form a composite signal for transmission by adding an output of the windowing of each sub-band. The WTRU may transmit the signal.
Abstract:
Systems, methods, and instrumentalities are disclosed for selecting a precoding matrix for orthogonal frequency division multiplexing (OFDM) transmission. A wireless transmit/receive unit (WTRU) may determine a preceding matrix. The precoding matrix may be determined for a frequency band associated with a plurality of devices. A portion of the frequency band allocated to a device of the plurality of devices may be determined. A portion of the precoding matrix associated with the portion of the frequency band may be determined. Data may be sent using the portion of the preceding matrix. For example, the portion of the frequency band allocated to the given transmitter may be a plurality of OFDM subcarriers. The precoding matrix may be determined as a function of a number of devices and/or an available bandwidth of the frequency band. Spectral precoding applies to a set of K synchronized users and each spectrally precoded user spans the whole set of N subcarriers available to the K users. Since the users are synchronized, orthogonality between the N subcarriers and the users is maintained.
Abstract:
The disclosure pertains to methods and apparatus for Faster than Nyquist (FTN) modulation schemes to increase throughput in multicarrier communication systems and wherein the latency problem inherent in filter bank multicarrier systems (FBMC) is reduced or eliminated by using non-orthogonal waveforms (i.e., faster than Nyquist modulation) in only part(s) of the subframe or packet and orthogonal waveforms in other part(s). The number and spacing between FTN pulses may be selected such that the last sample of the last pulse is received within the time slot allocated to the subframe/ packet, thereby eliminating added latency. The FTN modulation scheme may be employed both temporally and in frequency (e.g., the frequency spacing of the channels may be tighter than the Nyquist frequency spacing condition. FTN signaling also may be used as a method to control/coordinate interference between different nodes. For instance, if a node uses FTN, more pulses may be packed into a given period in the time domain and/or more channels may be packed into a given bandwidth in the frequency domain, hence some parts of the band may be vacated for use by others, use by the same node for additional channels, or used with reduced power. The interference control/coordination may be extended to time and frequency. Such FTN schemes may be used with different types of multicarrier systems.
Abstract:
Embodiments contemplate TDD systems and techniques where timeslots may be allocated as DL, UL, or FDSC; the base station (BS) may be full duplex singled channel (FDSC) capable; and some, all, or none of the UEs (or WTRUs) may be FDSC capable. In one or more embodiments, FDSC1 timeslots may be contemplated that may be used (in some embodiments perhaps exclusively used) by a pair of radios, for example one BS and one UE, both having FD capability. In one or more embodiments, FDSC timeslots may be shared among a BS with FDSC capability and two or more UEs, that may be half duplex (HD). Embodiments also contemplate various FDD systems and techniques, including full duplex FDD systems and techniques.
Abstract:
Systems and methods for providing orthogonal frequency division multiplexing-offset quadrature amplitude modulation (OFDM-OQAM) structure may be disclosed. For example, a synthesis filter bank (SFB) and/or an analysis filter bank (AFB) for a filter length may be derived. The filter length may be odd. Additionally, the AFB may be an inverse discrete Fourier transform (IDFT)-based AFB and/or a discrete Fourier transform (DFT)-based AFB.
Abstract:
Techniques for inter-cell interference cancellation are disclosed. At each transmitter, the data (message) may split into two or more layers, (e.g., common and private parts), and may be encoded in different rates, allocated with different powers, possibly beamformed using different precoders, and transmitted through the same physical channels. The common part is to be decoded at both the intended and unintended users, while the private part is to be decoded at the intended user.