Abstract:
The present application relates to devices and methods for harvesting skin graft sheets. The present invention provides a blister raising device comprising a blade assembly for cutting a blister sheet and an array of protrusions configured to prevent a portion of skin at the donor site from blistering.
Abstract:
Devices and methods for skin graft harvesting are disclosed. In one aspect of the invention, substrates for transplanting skin grafts are disclosed that include a soft-tack, biocompatible composition having a surface adapted to contact at least one excised skin graft and engage the graft for removal from a donor site. In another aspect of the invention, at least a portion of the skin-contacting surface of the substrate (or dressing) is porous to facilitate fluid transport into (or out of) the graft site during harvesting and/or transplantation. The substrates can also incorporate an absorbent component to capture fluids. The substrate can be a mesh or fabric or web, e.g. woven, knitted, nonwoven or molded. The substrate can be a mesh of biocompatible fibers, for example, cellulosic, polyolefins, polyurethanes, polyesters or polyamide fibers. In one embodiment the mesh is formed of cellulose acetate fibers and coated with a silicone gel, to imparted the desire degree of tackiness.
Abstract:
A system and apparatus for promoting perfusion at a tissue site containing a sprain by applying a vacuum to intact skin extending over or surrounding the tissue site. The system and apparatus comprise a manifold formed from a porous material and configured to be disposed proximate the intact skin for distributing vacuum to the intact skin, and a sleeve adapted to cover the manifold and form a chamber containing the manifold to seal the manifold within the chamber between the sleeve and the intact skin. The system and apparatus further comprise a fluid coupling member adapted to deliver vacuum to the manifold for distribution to the intact skin. A method for applying vacuum to the intact skin of a tissue site is also disclosed and described herein.
Abstract:
A reduced pressure treatment system includes a distribution manifold having a backing substrate with a first side and a second side and a plurality of protrusions positioned on the first side of the backing substrate. Each of the protrusions includes a substantially circular cross-sectional shape and has a diameter of between about 0.1 and 2.0 millimeters, the backing substrate having a plurality of apertures formed therein to allow fluid communication between the first side and the second side opposite the first side. A reduced pressure source is fluidly connected to the apertures of the backing substrate to deliver the reduced pressure through the apertures, between the protrusions, and to a tissue site.