Abstract:
Embodiments of the present disclosure describe a sensor comprising a substrate, one or more fragmented carbon nanotube compositions embedded in the substrate, wherein the carbon nanotube compositions include one or more carbon nanotubes, and one or more conductive devices affixed to one or more sides of the fragmented carbon nanotube compositions with an affixation agent. Embodiments of the present disclosure further describe a method of fabricating a sensor comprising embedding a carbon nanotube composition in a substrate, wherein the carbon nanotube composition includes one or more carbon nanotubes, and fragmenting the carbon nanotube composition.
Abstract:
A method for making a copolymer-wrapped nanotube coaxial fiber. The method includes supplying a first dope to a spinning nozzle; supplying a second dope to the spinning nozzle; spinning the first and second dopes as a coaxial fiber into a first wet bath; and placing the coaxial fiber into a second wet bath, which is different from the first bath. The coaxial fiber has a core including parts of the first dope and a sheath including parts of the second dope. Solvent molecules of the second wet bath penetrate the sheath and remove an acid from the core.
Abstract:
A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm -1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm -1 ) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm -1 ). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young's modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.
Abstract:
A stretchable electrically conductive coaxial fiber (204) includes a tubular sheath (232) that is made from a thermoplastic elastomer that is an electrical insulator, and an electrically conductive strip (206) located inside the tubular sheath (232). The conductive strip (206) is buckled inside the tubular sheath (232) to form a ribbon.
Abstract:
Embodiments of the present disclosure describe a method of preparing a colloidal solution comprising preparing a salted aqueous solvent and dispersing a graphitic material in the salted aqueous solvent. Embodiments of the present disclosure further describe a method of treating a graphitic material comprising agitating a graphitic material in a salted aqueous solvent and removing residual chemical species to obtain a treated graphitic material. Embodiments of the present disclosure also describe a colloidal solution comprising a liquid medium and a treated graphitic material dispersed in the liquid medium sufficient to form a colloidal solution.