Abstract:
Systems, control subsystems, and methods for projecting an electron beam onto a specimen are provided. One system includes a stage configured to move the specimen with a non-uniform velocity. The system also includes a projection subsystem configured to project the electron beam onto the specimen while the stage is moving the specimen at the non-uniform velocity. In addition, the system includes a control subsystem configured to alter one or more characteristics of the electron beam while the projection subsystem is projecting the electron beam onto the specimen based on the non-uniform velocity. One method includes moving the specimen with a non-uniform velocity and projecting the electron beam onto the specimen during movement of the specimen. In addition, the method includes altering one or more characteristics of the electron beam during projection of the electron beam onto the specimen based on the non-uniform velocity.
Abstract:
A system and methods for efficiently performing media writing functions is disclosed. The system and methods include: detecting media movement with respect to a base and heads during reading and writing, and moving the heads in response; using an interferometer, such as a dual beam differential interferometer, to dynamically monitor disk position and address perceived errors; and minimizing repeatable and non repeatable runout error by writing data, such as servo bursts, in multiple revolutions to average adverse runout conditions. The present system has the ability to use an interferometer to enhance media certification and perform on line, in situ monitoring of the media, and includes shrouding, head mounting, disk biasing, and related mechanical aspects beneficial to media writing.
Abstract:
A method and tool for conducting charged-particle beam direct write lithography is disclosed. A disclosed method involves condensing an initial design file down to a set of profiles and a pattern of relative locations to form a formatted pattern file. The formatted pattern file is adjusted to accommodate desired pattern corrections. Portions of the formatted pattern records are extracted to form data strips that have a plurality of channels with a pattern of profiles and spatial indicators. Data strips are sequentially read to construct a printable pattern of profiles and spatial indicators that specify the locations of the profiles. Additionally, the pattern of profiles are sequentially printed from each data strip onto a substrate to form the desired pattern on the substrate.
Abstract:
A system and methods for efficiently performing media writing functions is disclosed. The system and methods include: detecting media movement with respect to a base and heads during reading and writing, and moving the heads in response; using an interferometer, such as a dual beam differential interferometer, to dynamically monitor disk position and address perceived errors; and minimizing repeatable and non repeatable runout error by writing data, such as servo bursts, in multiple revolutions to average adverse runout conditions. The present system has the ability to use an interferometer to enhance media certification and perform on line, in situ monitoring of the media, and includes shrouding, head mounting, disk biasing, and related mechanical aspects beneficial to media writing.