Abstract:
The invention refers to a system for providing a spectral image using a conventional CT system. The system comprises a data providing unit (11) for providing first projection data and second projection data, wherein the first and second projection data have been acquired using different acquisition spectra, wherein the first projection data has been acquired during a scout scan and the second projection data has been acquired during a diagnostic scan, or wherein the first and second projection data have been acquired by a first and second part of the detector, respectively. The first and second part of the detector acquire projection data with different acquisition spectra. A spectral image generation unit (12) generates a spectral image based on the projection data. With this system a spectral image can be provided using a conventional CT system with a decreased acquisition time.
Abstract:
The present invention relates to a photon scanning apparatus comprising a photon source (2) to emit a photon beam (4), a photon detector (6) to detect photons emitted from the photon source (2). The photon source (2) is adapted to emit the photon beam (4) in accordance with a predetermined pulse width modulation scheme at a predetermined flux rate, wherein the pulse width modulation scheme defines pulse widths of the photon beam (4) for respective positions of the photon source (2) and the photon detector around a central axis (R) and an object to be scanned. The photon detector (6) is adapted to start detecting photons with a delay relative to the photon source starting to emit photons and to finish detecting photons prior to the photon source stopping to emit photons. The photon scanning apparatus thus only has to be calibrated for the predetermined flux rate.
Abstract:
The present invention relates to a detector arrangement for an X-ray phase contrast system (5), the detector arrangement (1) comprising: a scintillator (11); an optical grating (12); and a detector (13); wherein the optical grating (12) is arranged between the scintillator (11) and the detector (13); wherein the scintillator (11) converts X-ray radiation (2) into optical radiation (3); wherein the optical grating (12) is configured to be an analyzer grating being adapted to a phase-grating (21) of an X-ray phase contrast system (5); wherein the optical path between the optical grating (12) and the scintillator (11) is free of focussing elements for optical radiation. The present invention further relates to a method (100) for performing X-ray phase contrast imaging with a detector arrangement (1) mentioned above. The invention avoids the use of an X-ray absorption grating as G2 grating in an X-ray phase contrast interferometer system.
Abstract:
The present invention relates to computer tomography X-ray imaging. In order to provide further improved data for the reconstruction, a system (10) for computer tomography X-ray imaging is provided. The system comprises a data interface (12) and a processing unit (14). The data interface is configured to provide at least first and second CT X-ray radiation projection data for at least a first and second X-ray energy range, which ranges are different from each other. The processing unit is configured to determine a correction for slice normalization, and to apply an equal slice normalization for the first and the second CT X-ray projection data and thereby generating prepared first and second CT X-ray projection data. For the correction, the equal slice normalization is based on measured data of outer detector elements. Further, the data interface is configured to provide the prepared first and second CT X-ray projection data for further processing. In an example, the system further comprises a computer tomography X-ray imaging acquisition arrangement (20) with an X-ray source (22) configured to generate an X-ray beam, and an X-ray detector (26) configured as an energy discriminating X-ray detector to simultaneously provide X-ray radiation projection data for at least two different X-ray energy ranges separately. The computer tomography X-ray imaging acquisition arrangement is configured to acquire at least the first and second CT X-ray projection data of a region of interest of an object for the at least first and second X-ray energy range.
Abstract:
A source grating structure (G0) for interferometric X-ray imaging cable of generating a non-uniform intensity profile behind a surface (S) of the grating structure when exposed to X-ray radiation.
Abstract:
A method includes performing a first pass of an iterative image reconstruction in which an intermediate first spectral image and an intermediate second spectral image are generated using an iterative image reconstruction algorithm, start first spectral and second spectral images, and initial first spectral regularization and second spectral regularization parameters, updating at least one of the initial first spectral regularization or second spectral regularization parameters, thereby creating an updated first spectral regularization or second spectral regularization parameter, based at least on a sharpness of one of the intermediate first spectral or second spectral images, and performing a subsequent pass of the iterative image reconstruction in which an updated intermediate first spectral and second spectral image is generated using the iterative image reconstruction algorithm, the intermediate first spectral and second spectral images, and the updated first spectral regularization and Compton scatter regularization parameters.
Abstract:
The present invention relates to a stereo tube radiation imaging system in which radiation emitted from each radiation source covers a different area of the detector surface. Furthermore, the present invention relates to a stereo tube imaging method wherein both radiation sources are operated independently and each cover part of the detector surface area. This is advantageous in that it may reduce radiation dose compared to known stereo tube imaging and introduces new possibilities for stereo tube imaging, such as improved object tracking within a body.
Abstract:
The present invention relates to improved assessment of a stenosis in a blood vessel in a body by comparing hemodynamic properties of the stenosed blood vessel with a substantially symmetric different blood vessel in the same body.
Abstract:
An imaging system (200) includes a radiation source (208) that emits radiation that traverses an examination region. The imaging system further includes a hybrid data acquisition system (212) that receives radiation that traverses the examination region. The hybrid data acquisition system includes a phase-contrast sub-portion (304) spanning a sub- portion of a full field of view. The hybrid data acquisition system further includes at least one of an integrating portion (302, 702, 804, 806, 902) or a spectral portion (402, 704, 706, 802, 1002) spanning the full field of view. The hybrid data acquisition system generates a phase-contrast signal and at least one of an integration signal or a spectral signal. The imaging system further includes a reconstructor (216) that reconstructs the phase-contrast signal and at least one of the integration single or the spectral signal to generate volumetric image data indicative of the examination region.
Abstract:
An imaging system (200) is configured for grating-based DPCI. The imaging system includes a rotating gantry (204) that rotates around an examination region, a radiation source (208), supported by the rotating gantry, that emits radiation that traverses the examination region, a detector array (212), supported by the rotating gantry, that detects radiation that traverses the examination region, and an interferometer, supported by the rotating gantry, which includes a source grating (214), a phase grating (218), and an absorber grating (220). At least one of the phase grating or the absorber grating continuously translates with respect to the other during an integration period and the detector generates and outputs an electrical signal indicative of the detected radiation, wherein the electrical signal includes an absorption component, a coherence component and a phase component.