Abstract:
An elongated catheter device with a distal balloon assembly is adapted for endovascular insertion. Coolant injected through the device may directly cool tissue contacting the balloon (212), or may cool a separate internal chamber. In the first case, the coolant also inflates the balloon, and spent coolant is returned to the handle via a return passage extending through the body of the catheter.Plural balloons may be provided, wherein a secondary outer balloon (212) surrounds a primary inner balloon (203), the primary balloon being filled with coolant and acting as the cooling chamber. The secondary balloon is coupled to a vacuum return lumen (205) to serve as a robust leak containment device and thermal insulator around the cooling chamber.
Abstract:
An elongated catheter device (10) with a distal balloon (860) assembly is adapted for endovascular insertion. Coolant injected through the device may, in different embodiments, directly cool tissue contacting the balloon, or may cool a separate internal chamber. Plural balloons may be provided, wherein a secondary outer balloon (865) surrounds a primary inner balloon, the primary balloon being filled with coolant and acting as the cooling chamber, the secondary balloon being coupled to a vacuum return lumen (850) to serve as a robust leak containment device and thermal insulator around the cooling chamber. One or more sensors may be disposed between the balloons or the vacuum return lumen, to detect leaks and control the flow of fluid through the device. Examples of sensors include pressure and temperature sensors, optical sensors, magnetic flow switches and flow meters.
Abstract:
A medical device includes a catheter body having a first injection lumen, a second injection lumen, and an exhaust lumen, where the first injection lumen provides a fluid flow rate greater than a fluid flow rate provided by the second injection lumen; an expandable element coupled to the catheter body in fluid communication with the first and second injection lumens; a cryogenic fluid source in fluid communication with the first and second injection lumens; a valve in fluid communication with the first and second injection lumens to selectively allow fluid flow to at least one of the first and second injection lumens; a pressure sensor in fluid communication with an interior defined by the expandable element; and a controller in communication with the pressure sensor programmed to regulate fluid flow through the first injection lumen based at least in part on a signal from the pressure sensor.
Abstract:
A tissue ablation system for ablating human tissue wherein sensing and ablation procedures are performed and controlled independently. A sensing wire is positioned distally to the ablation region and is adapted to pass thorough the ablation device such that it may move with or independently of the ablation device without obstructing the surface tissue interface of the ablation energy. The ablation device can ablate a substantial portion of a circumferential region of tissue, for example at or near the location where the pulmonary vein extends from the atrium. The tissue ablation system comprises an ablation device comprised of an elongated catheter with a proximal region and a distal region and an ablation element located proximate the distal region of the catheter. A sensing device having an elongated body with a proximal portion and a distal portion is adapted to be positioned within a vessel at or near a vessel ostium, wherein the sensing device is adapted to be slidably received within a lumen of the ablation device. The sensing device, a guide wire for example, may be shaped in various configurations to allow sensing device such as electrodes disposed thereon to contact the vessel wall near the ablation region. In this fashion, the sensing and ablation procedures are de-coupled such that the sensing device does not interfere or obstruct the ablation member's interface with the tissue
Abstract:
The present invention may include a medical device having a handle, a catheter coupled to the handle, and an expandable element coupled to the catheter. The medical device may also include first and second elongate bodies that traverse a length of the handle and catheter. A housing may be disposed within the handle, with the housing defines a first opening able to receive a portion of the first elongate body, a second opening able to receive a portion of the second elongate body, and a third opening opposite the first and second openings able to receive a portion of both the and second elongate bodies. A separation element may be disposed within the housing, with the separation element defining a path able to receive a portion of the second elongate body, and whereby a portion of the first elongate body forms a loop around the separation element.
Abstract:
An elongated catheter device with a distal balloon assembly is adapted for endovascular insertion. Coolant injected through the device may, in different embodiments, directly cool tissue contacting the balloon, or may cool a separate internal chamber. In the first case, the coolant also inflates the balloon, and spent coolant is returned to the handle via a return passage extending through the body of the catheter.Plural balloons may be provided, wherein a secondary outer balloon surrounds a primary inner balloon, the primary balloon being filled with coolant and acting as the cooling chamber, the secondary balloon being coupled to a vacuum return lumen to serve as a robust leak containment device and thermal insulator around the cooling chamber. Various configurations, such as surface modification of the balloon interface, or placement of particles, coatings, or expandable meshes or coils in the balloon interface, may be employed to achieve this function.