Abstract:
Provided are, inter alia, flow centration components (100) that can be used in flow cytometers and other applications. A flow centrator can define central axis (116), a proximal end (106), and a distal end (108), and having a central bore (112) extending within the flow centration component in the direction of the central axis; the flow centration component defining a splined outer surface that defines a plurality of circumferentially arranged bypass flute channels (126), the plurality of bypass flute channels extending in the direction of the central axis, and each of the bypass flute channels having a depth and a length. Also provided are related methods that utilize the disclosed components.
Abstract:
The present disclosure provides apparatuses, systems, and methods for performing particle analysis through flow cytometry at comparatively high event rates and for gathering high resolution images of particles.
Abstract:
An embodiment of a system with a minute measure of pulsatility in a flow of a fluid is described that comprises a first pump configured to flow the fluid to a junction at a first flow rate that comprises a measure of pulsatility; and a second pump configured to flow a portion of the fluid from the junction at a second flow rate that is less than the first flow rate to produce a flow of the fluid at a third flow rate from the junction with a minute measure of pulsatility.
Abstract:
The present set of embodiments relate to a system, method, and apparatus for an optical configuration in a flow cytometer that allows for independent adjustment of focusing for each light source. Such systems, methods, and apparatuses require a final focusing element to be moved near the beginning of the optical train and for each optical element coming after the final focusing element to be configured to accommodate converging light beams while minimizing the introduction of aberrations into those beams.
Abstract:
Disclosed herein are systems for imaging and ablating a sample. An imaging/ablating device (110) includes an optical assembly (112), a sample stage (114), and a receiver (116). The optical assembly (112) is disposed in an inverted position below the sample stage (114) and the receiver (116) is positioned above the sample stage (112). The optical assembly enables imaging of a sample disposed on the sample stage (114). The optical assembly (112) also enables ablation of a region of interest within the sample. The laser light propagated from the optical assembly during ablation propagates substantially in the same direction as the direction of travel of the ablation plume (20) toward the receiver (116).
Abstract:
The present set of embodiments relates to systems and methods for diagnosing a fluidics system and determining data processing settings for a flow cytometer. Systems and methods for diagnosing a fluidics system require accurate measurement and interpretation of fluctuations within the fluid delivery system. Systems and methods for determining data processing settings require an accurate measurement of peak times among various channels and being able to adjust time delay settings wherein peak time is the measurement of time elapsed from the beginning of the data collection time window to the highest peak in the window.
Abstract:
The present disclosure provides devices, systems and methods for concentrating particles after application of a field and flipping the direction of the particles. The field applied to the particles can be an acoustic field. The particles can be flipped from a first flow stream at a higher speed into a second flow stream at a lower speed to aid in concentrating the particles, including concentration within an analysis region.
Abstract:
Various embodiments disclosed herein comprise acoustic cytometry based methods, kits, computer software methods and systems to analyze a variety of bioparticles. In one embodiment, a method for analyzing bioparticles comprises: acoustically focusing one or more bioparticles through an interrogation zone; optically exciting the one or more bioparticles in the interrogation zone with an excitation source; detecting an optical signal from the bioparticles; and analyzing the optical signal to characterize at least one quality or quantity parameter of the bioparticles. Properties of biomolecules that may be analyzed include but are not limited to cell proliferation analysis, live/dead cell discrimination, cell cycle analysis, basic phenotyping, immunophenotyping, rare-event detection, apoptosis, phagocytosis, pinocytosis, detection of phosphoproteins, detection of one or more cellular markers, detection of one or more intracellular marker, detection of cancer cells, detection of pathological markers on a cell, microbial cell analysis and/or picophytoplankton analysis.
Abstract:
A sampling system is provided. The sampling system includes a housing. Mounted to the housing is a Hall effect sensor. A probe configured to contact a sample is inserted into the housing. The probe includes an elongated portion and a restorative spring inserted onto the elongated portion of the probe. The restorative spring provides sufficient restorative force to return the probe to a relaxed position. The Hall effect sensor is configured to sense a field strength generated by the proximity of the restorative spring of the probe in the extended position.