Abstract:
A high performance attitude determination system, including a global navigation satellite system (GNSS) receiver, the receiver including a first radio-frequency front-end (RF1) connected to a main antenna; a second radio-frequency front-end (RF2) connected to an auxiliary antenna; and a digital section connected to both RF1 and RF2. The digital section (i) generates a first set of GNSS raw measurements based on signals received from RF1; (ii) generates a second set of GNSS raw measurements based on signals received from RF2; (iii) computes a spatial attitude of a baseline between main and auxiliary antennas, using the first and the second sets of GNSS raw measurements, and based on carrier phase integer ambiguity resolution; (iv) continues updating the spatial attitude using the first and the second sets of GNSS raw measurements without carrier phase integer ambiguity resolution, and using fractional carrier phases. Optionally, RF1 and RF2 use a common clock.
Abstract:
A first plurality of differences (first differences or second differences) of carrier phase measurements of global navigation satellite system (GNSS) signals corresponding to a first measurement epoch is received. A plurality of differences of carrier phase ambiguities of the first plurality of differences of carrier phase measurements is resolved. A first fixed position of the rover is computed. A first plurality of sub-corrections is computed based at least in part on the first fixed position of the rover, a position of the base, a position of each specific GNSS satellite, and the first plurality of differences of carrier phase measurements. The first plurality of sub-corrections is then used to reduce the processing time for ambiguity resolution of carrier phase measurements in subsequent measurement epochs. The sub-corrections can be smoothed, aged, or smoothed and aged.