Abstract:
A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.
Abstract:
A system measures the quantum energy levels of a diamond nitrogen vacancy (DNV) material to provide information regarding the quality of the material. The measurements may provide information regarding the degree of strain in the crystal lattice of the material, the concentration of crystal defect in the material, the concentration of nitrogen vacancy (NV) centers in the material, or the concentration of impurities in the material. The system may be employed to perform quality control checks on the properties of the DNV material quickly and non-destructively.
Abstract:
A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a magnetic field generator that generates a magnetic field that is applied to the NV diamond material, a radio frequency (RF) excitation source that provides RF excitation to the NV diamond material, an optical excitation source that provides optical excitation to the NV diamond material, an optical detector that receives an optical signal emitted by the NV diamond material, and a controller. The controller is configured to compute a total incident magnetic field at the NV diamond material based on the optical signal emitted by the NV diamond material, and drive the magnetic field generator to generate a compensatory magnetic field, the generated compensatory magnetic field being set to offset a shift in the optical signal emitted by the NV diamond material caused by an external magnetic field.
Abstract:
Methods and configuration are disclosed for providing higher magnetic sensitivity magnetometers through fluorescence manipulation by phonon spectrum control. A method for increasing the magnetic sensitivity for a DNV sensor may include providing a diamond having nitrogen vacancies of a DNV sensor and an acoustic driver and acoustically driving the diamond with the acoustic driver to manipulate a phonon spectrum of the DNV sensor. A DNV sensor may include a diamond having nitrogen vacancies, a photo detector configured to detect photon emissions from the diamond responsive to laser excitation of the diamond and an acoustic driver configured to manipulate a phonon spectrum for the DNV sensor by acoustically driving the diamond.
Abstract:
A system for magnetic detection includes a nitrogen vacancy (NV) diamond material comprising a plurality of NV centers, a radio frequency (RF) excitation source configured to provide RF excitation to the NV diamond material, an optical excitation source configured to provide optical excitation to the NV diamond material, an optical detector configured to receive an optical signal emitted by the NV diamond material, and a controller. The optical signal is based on hyperfine states of the NV diamond material. The controller is configured to detect a gradient of the optical signal based on the hyperfine states emitted by the NV diamond material.