Abstract:
An electrodeless plasma lamp and a method of generating light are provided. The plasma lamp may comprise a power source to provide radio frequency (RF) power, and a bulb containing a fill that forms a plasma when the RF power is coupled to the fill. The plasma lamp further comprises a resonant structure having a quarter wave resonant mode. The resonant structure includes a lamp body comprising a dielectric material having a relative permittivity greater than 2, an inner conductor, and an outer conductor. The power source is configured to provide the RF power to the lamp body at about a resonant frequency for the resonant structure.
Abstract:
A plasma lamp with a positive-loop feedback topology, having a resonating waveguide body and at least one amplifier critically coupled to the body which is stable under all operating conditions both before a plasma is formed and after the plasma reaches steady state. An iterative method for configuring the lamp circuit includes determining the load trajectory of each amplifier under all operating conditions, and overlaying it on a polar-plot showing regions of stability, conditional stability, and instability. If the load trajectory passes through an unstable region, circuit alterations are made to avoid that region.
Abstract:
Systems and methods for lamp assembly and connection of radio frequency feeds to lamp body are described. In an example embodiment, a circuit board is positioned transverse to a lamp body and one or more radio frequency probes extend from the edge of the circuit board into the lamp body. In another embodiment, portions of a circuit board may form traces that extend into a lamp body. In other embodiments, radio frequency probes may extend from the front surface or back surface of a circuit board into a lamp body. A lamp housing may provide a support, ground and heat sink for lamp components.
Abstract:
A plasma lamp for an electrodeless plasma lamp having a shaped dielectric waveguide body. The shaped body may have a relatively thin region containing a bulb, and a second region thicker than the first region. Microwave probes may be positioned in the second region to provide power to the waveguide body. The body may be shaped to intensify the electric field in the first region adjacent to the bulb to allow operation at a lower frequency than a solid cylindrical or rectangular waveguide body having the same volume and dielectric constant.
Abstract:
In one example embodiment, an electrodeless plasma lamp comprises a source of radio frequency (RF) power, a bulb containing a fill that forms a plasma when the RF power is coupled to the fill, and a dipole antenna proximate the bulb. The dipole antenna may comprise a first dipole arm and a second dipole arm spaced apart from the first dipole arm. The source of RF power may be configured to couple the RF power to the dipole antenna such that an electric field is formed between the first dipole arm and the second dipole arm. The dipole antenna may be configured such that a portion of the electric field extends into the bulb and the RF power is coupled from the dipole antenna to the plasma. The invention extends to methods and systems for generating light in electrodeless plasma lamps.
Abstract:
An electrodeless plasma lamp is described that employs acoustic resonance. The plasma lamp includes a metal enclosure having a conductive boundary forming a resonant structure, and a radio frequency (RF) feed to couple RF power from an RF power source into the resonant cavity. A bulb is received at least partially within an opening in the metal enclosure. The bulb contains a fill that forms a light emitting plasma when the power is coupled to the fill. The RF power source includes a controller to modulate the RF power to induce acoustic resonance in the plasma.
Abstract:
An electrodeless plasma lamp is provided. The lamp includes a conductive enclosure including a dielectric material (e.g., air) and a bulb containing a fill to form a light emitting plasma. A radio frequency (RF) power source is coupled into the enclosure. At least one conductive applicator applies power from the enclosure to the bulb and at least one lumped inductive element is coupled between the RF feed and applicator. The lumped inductive element may be a helically wound coil. In an example embodiment, the lamp includes first and second lumped inductive elements. The first and second lumped inductive elements may extend from opposed end walls of the enclosure. The first lumped inductive element may be connected to a first conductive applicator located proximate a first end of the bulb and the second lumped inductive element may be connected to a second conductive applicator located proximate a second end of the bulb.
Abstract:
An electrodeless plasma lamp and method of generating light are described. The lamp may comprise a lamp body, a source of radio frequency (RF) power and a bulb. The lamp body may comprise a solid dielectric material and at least one conductive element within the solid dielectric material. The source of RF power is configured to provide RF power and an RF feed configured to radiate the RF power from the RF source into the lamp body. One or more tuning mechanisms allow tuning of the lamp body to a given resonant frequency. The bulb is positioned proximate the lamp body and contains a fill that forms a plasma when the RF power is coupled to the fill from the lamp body. The at least one conductive element is configured to concentrate an electric field proximate the bulb.
Abstract:
An electrodeless plasma lamp and a method of controlling operation of a plasma lamp are provided. The plasma lamp may a power source to provide radio frequency (RF) power and a lamp body to receive the RF power from a feed. The lamp body may comprise a dielectric material having a dielectric constant greater than 2 and bulb is provided that contains a fill that forms a plasma that emits light when at least a portion of the RF power is coupled to the fill. A light guide directs light from the bulb to a photosensor that is shielded from light output from a front side of the lamp body. The lamp includes a drive circuit to control operation of the lamp based on a level of light detected by the photosensor.
Abstract:
In various exemplary embodiments, an electrodeless plasma lamp includes a bulb configured to be coupled to a source of radio frequency (RF) power. The bulb contains a fill that forms a plasma when the RF power is coupled to the fill. An electrically-conductive convex shield is positioned proximate to the bulb with a convex surface of the shield being distal to the bulb. A resonant structure having a quarter wave resonant mode includes a lamp body having a dielectric material having a relative permittivity greater than 2 with an inner conductor and an outer conductor. The source of RF power is configured to provide RF power to the lamp body at about a resonant frequency for the resonant structure.