Abstract:
The present invention is directed to a method of selectively pre-exposing a photosensitive printing element prior to imagewise exposure in order to remove oxygen from the photosensitive layer prior to imagewise exposure The invention is usable in a computer-to-plate process to produce flexographic relief image printing elements
Abstract:
An improved apparatus and a method of using the apparatus to remove non- crosslinked photopolymer from an imaged and exposed surface of a relief image printing element. Included are means for supporting and rotating the printing element, means for softening and/or melting non-crosslinked photopolymer on the imaged and exposed surface of the printing element, and at least one thermal developing assembly. The thermal developing assembly includes means for supplying an absorbent material that is contactable with the printing element, and that is capable of removing at least a portion of the softened and/or melted non-crosslinked photopolymer, and means for causing the absorbent material to contact at least a portion of the printing element. The absorbent material is backed with an endless impression belt that is supported by a plurality of rollers. When the absorbent material contacts the surface of the printing element, softened and/or melted non-crosslinked photopolymer on the surface of the printing element is removed.
Abstract:
An improved flexo processor and a method of using the improved flexo processor to increase the flexibility of both the type and the size of the flexographic printing element that may be processed. The novel thermal plate processor system is capable of processing both flat and round photosensitive printing elements with only minimal changes to the system. The thermal plate processor system may also include means for exposure and post-exposure/detack in the same system.
Abstract:
An improved apparatus and a method of using the apparatus to remove non- crosslinked photopolymer from an imaged and exposed surface of a relief image printing element. Included are means for supporting and rotating the printing element, means for softening and/or melting non-crosslinked photopolymer on the imaged and exposed surface of the printing element, and at least one thermal developing assembly. The thermal developing assembly includes means for supplying an absorbent material that is contactable with the printing element, and that is capable of removing at least a portion of the softened and/or melted non-crosslinked photopolymer, and means for causing the absorbent material to contact at least a portion of the printing element. The absorbent material is backed with an endless impression belt that is supported by a plurality of rollers. When the absorbent material contacts the surface of the printing element, softened and/or melted non-crosslinked photopolymer on the surface of the printing element is removed.
Abstract:
An improved apparatus for thermally developing a flexographic printing element to reveal a relief image on the surface and a method of using the apparatus to expose and develop - a flexographic printing element. The apparatus typically comprises means for softening or melting non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element; at least one roll that is contactable with the imaged surface of the flexographic printing element and capable of moving over at least a portion of the imaged surface of the flexographic printing element to remove the softened or melted non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element; and means for maintaining contact between the at least one roll and the imaged and exposed surface of the flexographic printing element. The means, for softening or melting non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element comprise a heater positioned adjacent to the imaged surface of the flexographic printing element and/or heating the at least one roll that contactable with the imaged surface of the flexographic printing element. The apparatus may also contain an exposure device to crosslink and cure the imaged surface of the flexographic printing element prior to thermal development.
Abstract:
An improved apparatus for thermally developing a flexographic printing element to reveal a relief image on the surface and a method of using the apparatus to expose and develop - a flexographic printing element. The apparatus typically comprises means for softening or melting non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element; at least one roll that is contactable with the imaged surface of the flexographic printing element and capable of moving over at least a portion of the imaged surface of the flexographic printing element to remove the softened or melted non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element; and means for maintaining contact between the at least one roll and the imaged and exposed surface of the flexographic printing element. The means, for softening or melting non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element comprise a heater positioned adjacent to the imaged surface of the flexographic printing element and/or heating the at least one roll that contactable with the imaged surface of the flexographic printing element. The apparatus may also contain an exposure device to crosslink and cure the imaged surface of the flexographic printing element prior to thermal development.