Abstract:
A method for assisting in positioning the acetabular cup comprises orienting a cup positioning instrument with a cup thereon in an initial reference orientation relative to an acetabulum of a pelvis with the cup forming a joint with the acetabulum, the cup positioning instrument comprising an inertial sensor unit with pre- planned orientation data for a desired cup orientation based on at least one landmark of the pelvis, The cup positioning instrument is rotated to a desired abduction angle as guided by an interface of the cup positioning instrument, based on movements relative to at least one landmark. The cup positioning instrument is rotated to a desired anteversion angle as guided by the interface of the cup positioning instrument, based on movements relative to the at least one landmark. Upon reaching the desired cup orientation as indicated by the interface, the cup is impacted into the acetabulum.
Abstract:
A system for measuring a length variation between body portions in computer-assisted surgery between a preoperative condition and intra- or post- operative condition comprises a a rangefinder configured to measure its distance to at least one reference landmark on at least a first body portion of a patient from a known position relative to a second body portion. A support includes joint(s) allowing one or more rotational degree of freedom of movement of the rangefinder to point to the at least one reference landmark. An inertial sensor unit is connected to the rangefinder to produce orientation data for the rangefinder. A computer-assisted surgery processing unit has a tracking module for tracking the rangefinder in a virtual coordinate system using the orientation data, a coordinate system module for determining coordinates in the virtual coordinate system of the at least one reference landmark using the distance and the orientation data, and a length calculation module for measuring a length between the body portions using the coordinates, the length calculation module calculating and outputting the length variation between the body portions by using said length obtained from a preoperative condition and said length obtained from an intra- or post-operative condition. A method for measuring a length variation between body portions in computer-assisted surgery between a preoperative condition and intra- or post- operative condition is also provided.
Abstract:
A computer-assisted surgery system for outputting at least one of a leg length discrepancy and an offset between a preoperative leg condition and a post- implant rejointing leg condition comprises instruments. An inertial sensor unit is connected to one of the instrument, the inertial sensor unit producing readings representative of its orientation. A computer-assisted surgery processor unit operating a surgical assistance procedure and comprises a coordinate system module for setting a pelvic coordinate system from readings of the at least one inertial sensor unit when the at least one instrument is in a given orientation relative to the pelvis, a tracking module for tracking an orientation of the at least one instrument relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor unit on the instrument, and a geometrical relation data module for recording preoperatively a medio-lateral orientation of the at least one instrument representative of a medio-lateral axis of the legs relative to the pelvic coordinate system and a distance between the legs along the medio-lateral axis, for recording after implant rejointing the medio-lateral orientation and said distance, and for calculating at least one of a leg length discrepancy and an offset, based on said distances and said medio-lateral orientations. An interface outputs at least the leg length discrepancy or the offset between the preoperative leg condition and the post-implant rejointing leg condition.
Abstract:
A computer-assisted surgery (CAS) system for tracking an orientation of a pelvis comprises at least one instrument, the instrument having an acetabulum abutment end adapted to be received in an acetabulum, a rim abutment adapted to be abutted against a rim of the acetabulum, and an indicator representative of a physical orientation of the instrument. An inertial sensor unit is connected to the at least one instrument, the inertial sensor unit producing readings representative of its orientation. A computer-assisted surgery processor unit comprises a coordinate system module for setting a pelvic coordinate system from readings of the at least one inertial sensor unit when the at least one instrument has the acetabulum abutment end received in the acetabulum, the coordinate system module setting the pelvic coordinate system by obtaining a plurality of orientation values from the at least one inertial sensor unit when the rim abutment is abutted against locations of the rim, one of said orientation values having the indicator aligned with a reference landmark, the coordinate system module defining an acetabular plane representative of the pelvic coordinate system from the plurality of orientation values; and a tracking module for tracking an orientation of the at least one inertial sensor unit relative to the pelvic coordinate system during movements thereof using the readings from the inertial sensor unit. An interface outputs orientation data as a function of the pelvic coordinate system.
Abstract:
Embodiments of a system and method for surgical tracking and control are generally described herein. A system may include a robotic arm configured to allow interactive movement and controlled autonomous movement of an end effector, a cut guide mounted to the end effector of the robotic arm, the cut guide configured to guide a surgical instrument within a plane, a tracking system to determine a position and an orientation of the cut guide, and a control system to permit or prevent interactive movement or autonomous movement of the end effector.
Abstract:
A computer-assisted surgery (CAS) system comprises a cup implanting device including a shaft having a tooling end and a handle end with a handle for being manipulated, the shaft having a longitudinal axis, the tooling end adapted to support a cup for being received in an acetabulum of a patient, and a rotation indicator having a visual guide representative of a device plane, wherein the device plane is in a known position and orientation relative to a center of the cup on the tooling end. A CAS processing unit includes at least one inertial sensor unit connected to the cup implanting device, the inertial sensor unit outputting three-axes readings and having a virtual preset orientation related to a reference axis of a pelvis of the patient, the virtual preset orientation being based on pre-operative imaging specific to the pelvis of the patient, the reference axis of the pelvis passing through a center of rotation of said acetabulum of the pelvis and through a reference landmark of the pelvis, wherein an instant three-axis orientation of the longitudinal axis of the cup implanting device is trigonometrically known relatively to the reference axis when the cup is in the acetabulum of the patient and the device plane passes through the reference landmark via the visual guide, the instant three-axis orientation used for calibrating the inertial sensor unit on the cup implanting device relative to the pelvis.
Abstract:
An impactor for positioning and inserting an acetabular cup into an acetabulum of a pelvis during hip arthroplasty is described. The impactor includes a guide element mounted to an elongated body and including first and second openings aligned with each other to define an axial passage. The first and second openings and the axial passage receive a guide pin therethrough that is pinned in a fixed position to the pelvis. The guide element provides a mechanical orientation guide which restricts an angular orientation of the impactor relative to the guide pin when the guide pin is pinned in the fixed position relative to the pelvis and received through the first and second openings of the guide element. Centering the openings of the guide element relative to the guide pin in the fixed position accordingly achieves a desired orientation of the impactor within a predetermined angular tolerance.
Abstract:
A pelvic digitizer device comprises a body comprising: a shaft having a tooling end and a handle end with a handle for being manipulated. A visual guide is oriented in a reference plane of the digitizer device. A cup is connected to the tooling end and adapted to be received in an acetabulum of a patient. An inertial sensor unit is connected to the body, the inertial sensor unit having a preset orientation aligned with the reference plane.