Abstract:
It is an object of the invention to provide an improved method of 3D-printing producing a component for use in a lighting device. Thereto, the invention provides a method of 3D-printing producing a component for use in a lighting device, the component comprising a flexible substrate having a stiffness and a polymer material or a monomer material, the method comprising printing the polymer material or the monomer material onto the flexible substrate in a printing structure; wherein the printing structure causes the flexible substrate to change into a second shape when the polymer material or the monomer material shrinks after printing; wherein an internal stress in the polymer material or the monomer material exerts a bending force on a surface area of the flexible substrate, wherein the bending force forces a displacement of the flexible substrate into the second shape.
Abstract:
The invention provides a reflector (2) comprising a reflector wall (20), the reflector wall (20) comprising a first wall surface (22) and a second wall surface (23) defining said reflector wall (20), the reflector wall (20) comprising a light transmissive material (21), wherein the reflector wall (20) has a first dimension (dl) and a second dimension (d2) defining a first reflector wall area, wherein each wall surface (22,23) comprises a plurality of parallel arranged elongated corrugations (210), wherein the corrugations have corrugation heights (h2) relative to recesses (220) between adjacent corrugations (210) and corrugation widths (w2) defined by the distance between adjacent recesses (220) at the respective wall surfaces (22,23), wherein the corrugations (210) have curved corrugation surfaces (230) between said adjacent recesses (220) having corrugation radii (r2) at the respective wall surfaces (22,23), and wherein over at least part of one of the first dimension (dl) and the second dimension (d2) one or more of (i) the corrugation heights (h2), (ii) the corrugation widths (w2), (iii) the corrugation radii (r2), and (iv) a shortest top- top distance (wl2) of corrugations tops (211) configured at different wall surfaces (22,23) vary over said wall dimension (dl,d2) for at least one of the wall surfaces (22,23). The reflector (2) has a first end (3) and a second end (4), wherein a third distance (d3) between the first end (3) and the second end (4) is bridged by one or more reflector walls (20), wherein the one or more reflector walls (20) are configured tapering from the second end (4) to the first end (3), and wherein the reflector (2) has a reflector cavity (5).
Abstract:
The invention provides lighting device (1000) configured to provide a beam of lighting device light (1001), the lighting device (1000) comprising: (a) a light transmissive window (100) having a first window side (101) and a second window side (102); (b) a reflector (200) comprising a reflector cavity (210), the reflector cavity (210) comprising a first reflector cavity side (201), a reflector cavity exit side (202), a reflector cavity wall (205) bridging said first reflector cavity side (201) and said reflector cavity exit side (202); wherein the reflector cavity wall (205) comprises a light reflective material (206), wherein the reflector cavity wall (205) comprises a 3D-printed cavity wall (1205); wherein at least part of the first window side (101) is configured as reflector cavity exit window (220) at the reflector cavity exit side (202); (c) a light source (10) configured at the first reflector cavity side (201) and configured to provide light source light (11) within said reflector cavity (210); and (d) a beam modifying element (300) configured at the first window side (201) within the reflector cavity (210), wherein the beam modifying element (300) comprises a 3D-printed beam modifying element (1300).
Abstract:
The invention provides a method for manufacturing a 3D item (1) by means of 3D printing. The method comprises the step of depositing, during a printing stage, 3D printable material (201) to provide 3D printed material (202), wherein the 3D printable material (201) comprises a core-shell filament (320) comprising (i) a core (321) comprising a core material (1321) having one or more of a core glass temperature Tg1 and a core melting temperature Tm1 and (ii) a shell (322) comprising a shell material (1322) having one or more of a shell glass temperature Tg2 and a shell melting temperature Tm2, wherein one or more of the shell glass temperature Tg2 and the shell melting temperature Tm2 is lower than one or more of the core glass temperature Tg1 and the core melting temperature Tm1. The method further comprises the step of heating, during a finishing stage, the 3D printed material (202) to a temperature equal to or higher than one or more of the shell glass temperature Tg2 and the shell melting temperature Tm2, and equal to or lower than one or more of the core glass temperature Tg1 and the core melting temperature Tm1.
Abstract:
A method for producing a light transmissive optical component (10) is disclosed. The method comprises 3D printing a stack (1) of at least two layers (2). Each layer (2) is a biconvex cylinder lens having an optical axis (OA) perpendicular to a stacking direction (S) of the stack (1).
Abstract:
The invention provides a method comprising 3D printing a 3D item (1), the method comprising depositing during a printing stage 3D printable material (201) and an optical fiber (610), to provide the 3D item (1) with the optical fiber (610) at least partly embedded in 3D printed material (202), wherein the 3D printable material (201) during at least part of the printing stage comprises a light transmissive material (207), the method further comprising providing during the printing stage a light escape part (620) comprising 3D printed material (202) comprising the light transmissive material (207), where visible light (11) propagating through the optical fiber (610) can escape from the optical fiber (610) via the 3D printed material (202) comprised by the light escape part (620) to external of the 3D item (1).
Abstract:
An optical component (100) is disclosed comprising a plurality of layers (130), each layer comprising a first region in between a second region and a third region, the first region having a lower transmissivity than the second and third regions, wherein the layers are staggered such that the optical component comprises at least one passage defined by partially overlapping regions of higher transmissivity. A luminaire including such an optical component and a 3-D printing method for manufacturing such a component are also disclosed.
Abstract:
An optical component (100) is disclosed comprising a plurality of layers (130), each layer comprising a first region in between a second region and a third region, the first region having a lower transmissivity than the second and third regions, wherein the layers are staggered such that the optical component comprises at least one passage defined by partially overlapping regions of higher transmissivity. A luminaire including such an optical component and a 3-D printing method for manufacturing such a component are also disclosed.
Abstract:
An optical component (10) is disclosed comprising a plurality of layers (11), each layer comprising a core portion (13) and a shell portion (15) enveloping the core portion, wherein the core portion is made of a first material and the shell portion is made of a second material, the first material and the second material having a different transmissivity. Also disclosed are a luminaire comprising such an optical component and a method of manufacturing such an optical component.
Abstract:
A method for manufacturing an object by means of 3D printing is provided. The method uses as printing material an acrylate polymer formed from one or more types of monomers that include at least one of an acrylate monomer and a methacrylate monomer. The method also uses a printer head with a nozzle that is arranged to deposit the printing material, wherein the nozzle has an orifice that comprises a central portion defining a ring of the orifice through which the printing material can be extruded during deposition of the printing material. The method comprises the steps of heating the printing material to a temperature in a range of 200 to 300 degrees Celsius before depositing the printing material, depositing at least a portion of the printing material in the form of a hollow tube having a cylinder shape by extruding the printing material through the ring, and cooling the deposited printing material (105) below its glass transition temperature.