Abstract:
Enhancements to a dual column, nitrogen producing cryogenic air separation unit with waste expansion are provided. Such enhancements include an improved air separation cycle that uses: (i) three condenser-reboilers; (ii) a reverse reflux stream from the condenser-reboiler associated with the lower pressure column to the higher pressure column; and (iii) a recycle stream of a portion of the vapor from one or more of the condenser-reboilers that is recycled back to the incoming feed stream and or the compressed purified air streams to yield improvements in the performance of such dual column, nitrogen producing cryogenic air separation units in terms of overall nitrogen recovery as well as power consumption compared to conventional dual column, nitrogen producing cryogenic air separation units employing waste expansion.
Abstract:
Various systems and methods for suppling cryogenic refrigeration to supercomputing applications such as quantum computing operations are provided. The disclosed systems and methods are flexible, efficient and scaleable to meet the cryogenic refrigeration requirements of many supercomputing applications. The disclosed systems and methods include: (i) a liquid nitrogen based integrated refrigeration system that integrates a nitrogen refrigerator with a refrigeration load circuit; (ii) a closed loop liquid nitrogen based refrigerator that provides cooling to the refrigeration load circuit via indirect heat exchange between liquid nitrogen in a nitrogen refrigerator and a separate refrigerant in a closed-loop refrigeration load circuit; and (iii) a liquid air based integrated refrigeration system that integrates an air intake system with a refrigerator and a refrigeration load circuit.
Abstract:
An advanced control system for a membrane bioreactor based wastewater treatment plant is disclosed. The disclosed control system comprises a membrane bioreactor (MBR) system and a microprocessor based controller that receives signals corresponding to selected measured MBR parameters and calculates or estimates one or more MBR calculated parameters including Membrane Conductivity (Fxc); and/or Oxygen Uptake Rate (OUR). The microprocessor based controller compares one or more calculated or estimated MBR parameters to prescribed setpoints or desired ranges and governs one or more pumps and valves in the MBR system to adjust the cleaning cycle in the MBR system, the MBR flows in the MBR system, or the influent flow to the biological basin in response thereto.