摘要:
Provided herein are broad-spectrum G-Protein coupled receptor (GPCR) binding agents, detectable/isolatable compounds comprising such binding agents (e.g., broad-spectrum GPCR binding agents linked to a functional element and/or solid surface), and methods of use thereof for the detection/isolation of GPCRs.
摘要:
Provided herein are palladium (Pd) catalysts with improved performance in biological environments. In particular, formulations, methods of preparations, and storage conditions are provided that provide improved performance of Pd catalysts under protein-rich conditions.
摘要:
The present invention provides haloalkane substrates, and linkers for connecting such substrates to functional elements (e.g., tags, labels, surfaces, etc.). Substrates and linkers described herein find use, for example, in labeling, detection, and immobilization of proteins, cells, and molecules. In particular, the linkers provided herein find use within substrates for dehalogenase variants that form covalent bonds with their haloalkane substrates.
摘要:
Provided herein are compositions and methods for photoaffinity labeling of molecular targets. In particular, probes that specifically interact with cellular targets based on their affinity and are then covalently linked to the cellular target via a photoreactive group (PRG) on the probe.
摘要:
Provided herein are broad-spectrum G-Protein coupled receptor (GPCR) binding agents, detectable/isolatable compounds comprising such binding agents (e.g., broad-spectrum GPCR binding agents linked to a functional element and/or solid surface), and methods of use thereof for the detection/isolation of GPCRs.
摘要:
Provided herein are palladium (Pd) catalysts with improved performance in biological environments. In particular, formulations, methods of preparations, and storage conditions are provided that provide improved performance of Pd catalysts under protein-rich conditions.
摘要:
Provided herein are cell-permeable, cell-compatible, and chemoselectively-cleavable linkers for tethering (e.g., covalently) functional elements (e.g., a cellular interaction element and a capture element), and methods of use (e.g., intracellular capture and extracellular release of cellular targets) therewith.